
The following is from my book and is the introduction to the chapter 
entitled:  The Method of Least Squares 

2.1 Introduction 

The first published treatment of the method of least squares was included in an appendix to 

Adrien Marie Legendre's book Nouvelles methods pour la determination des orbites des 

cometes.  The 9 page appendix was entitled Sur la methode des moindres quarres.  The book 

and appendix was published in 1805 and included only 80 pages but gained a 55 page 

supplement in 1806 and a second 80 page supplement in 1820 [ST86].  It has been said that 

the method of least squares was to statistics what calculus had been to mathematics.  The 

method became a standard tool in astronomy and geodesy throughout Europe within a decade 

of its publication.  The method was also the cause of a dispute between two giants of the 

scientific world of the 19th century: Legendre and Gauss.  Gauss in 1809 in his famous 

Theoria Motus claimed that he had been using the method since 1795.  That book was first 

translated into English in 1857 under the authority of the United States Navy by the Nautical 

Almanac and Smithsonian Institute [GA57].  Another interesting aspect of the method is that it 

was rediscovered in a slightly different form by Sir Francis Galton.  In 1885 Galton 

introduced the concept of regression in his work on heredity.  But as Stigler says: "Is there 

more than one way a sum of squared deviations can be made small?"  Even though the 

method of least squares was discovered about 200 years ago, it is still "the most widely used 

nontrivial technique of modern statistics" [ST86]. 

 

The least squares method is discussed in many books but the treatment is usually limited to 

linear least squares problems.  In particular, the emphasis is often on fitting straight lines or 

polynomials to data.  The multiple linear regression problem (described below) is also 

discussed extensively (e.g., [FR92, WA93]).  Treatment of the general nonlinear least squares 

problem is included in a much smaller number of books.  One of the earliest books on this 

subject was written by W. E. Deming and published in the pre-computer era in 1943 [DE43].  

An early paper by R. Moore and R. Zeigler discussing one of the first general purpose 

computer programs for solving nonlinear least squares problems was published in 1960 

[MO60].  The program described in the paper was developed at the Los Alamos Laboratories 

in New Mexico.  Since then general least squares has been covered in varying degrees and 

with varying emphases by a number of authors (e.g., DR66, WO67, BA74, GA94, VE02).   

  

For most quantitative experiments, the method of least squares is the "best" analytical 

technique for extracting information from a set of data.  The method is best in the sense that 

the parameters determined by the least squares analysis are normally distributed about the true 

parameters with the least possible standard deviations.  This statement is based upon the 

assumption that the uncertainties (i.e., errors) in the data are uncorrelated and normally 

distributed.  A complete and detailed proof of this statement is included in a very old text by 

Mansfield Merriman (The Elements of the Method of Least Squares, J.Wiley and Sons, 1877).  

For most quantitative experiments this is usually true or is a reasonable approximation.  When 

the curve being fitted to the data is a straight line, the term linear regression is often used.  

For the more general case in which a plane based upon several independent variables is used 

instead of a simple straight line, the term multiple linear regression is often used [FR92, 

WA93].  Prior to the advent of the digital computer, curve fitting was usually limited to lines 

and planes.  For the simplest problem (i.e., a straight line), the assumed relationship between 

the dependent variable y and the independent variable x is: 

 

 xaay 21   (2.1.1) 



 
For the case of more than one independent variable (multiple linear regression), the assumed 

relationship is: 

 

 12211 ...  mmm axaxaxay  (2.1.2) 

 
For this more general case each data point includes m+1 values: yi, x1i, x2i, …, xmi. 

 

The least squares solutions for problems in which Equations 2.1.1 and 2.1.2 are valid fall 

within the much broader class of linear least squares problems.  In general, all linear least 

squares problem are based upon an equation of the following form: 
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In other words, y is a function of X (a vector with m terms).  Any equation in which the p 

unknown parameters (i.e., the ak's) are coefficients of functions of only the independent 

variables (i.e., the m terms of the vector X) can be treated as a linear problem.  For example in 

the following equation, the values of a1, a2, and a3 can be determined using linear least 

squares: 
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This equation is nonlinear with respect to x but the equation is linear with respect to the ak's.  

In this example, the X vector contains only one term so we use the notation x rather than x1.  

The following example is a linear equation in which X is a vector containing 2 terms: 
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The following example is a nonlinear function: 
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The fact that a4 is embedded within the last term makes this function incompatible with 

Equation 2.1.3 and therefore it is nonlinear with respect to the ak's. 

 

For both linear and nonlinear least squares, a set of p equations and p unknowns is developed.  

If Equation 2.1.3 is applicable then this set of equations is linear and can be solved directly.  

However, for nonlinear equations, the p equations require estimates of the ak's and therefore 

iterations are required to achieve a solution.  For each iteration, the ak's are updated, the terms 

in the p equations are recomputed and the process is continued until some convergence 

criterion is achieved.  Unfortunately, achieving convergence is not a simple matter for some 

nonlinear problems. 

 

For some problems our only interest is to compute y = f(X) and perhaps some measure of the 

uncertainty associated with these values (e.g., f) for various values of X.  This is what is 

often called the prediction problem.  We use measured or computed values of x and y to 

determine the parameters of the equation (i.e., the ak's) and then apply the equation to 

calculate values of y for any value of x.  For cases where there are several (let us say m) 

independent variables, the resulting equation allows us to predict y for any combination of x1, 

x2, .. xm.  The least squares formulation developed in this chapter also includes the 

mthodology for prediction problems. 


