
The following is the chapter in my book that deals with

nonlinear regression software:

6.1 Introduction

6.2 General Purpose Nonlinear Regression Programs

6.3 The NIST Statistical Reference Datasets

6.4 Nonlinear Regression Convergence Problems

6.5 Linear Regression: a Lurking Pitfall

6.6 Multi-Dimensional Models

6.7 Software Performance

6.8 The REGRESS Program

Chapter 6 SOFTWARE

6.1 Introduction

One of the earliest applications of digital computers was least squares analysis of experimental

data. The Manhattan Project during World War II included a large emphasis on experiments to

determine basic properties such as half lives of radioactive isotopes, radiation shielding

parameters, biological effects of radiation and many other properties of vital interest. The

fundamentals of nonlinear least squares analysis was known then and was summarized in a book

by W. E. Deming in 1943 [DE43]. An unclassified Los Alamos publication in 1960 by R. Moore

and R. Zeigler described the software used at Los Alamos for solving nonlinear least squares

problems [MO60]. Besides describing their general purpose software, they discussed some of the

problems encountered in converging to a solution for some mathematical models.

Most readers of this book are either users of available NLR (nonlinear regression) software or are

interested in evaluating and/or obtaining NLR software. Some readers, however, will be

interested in writing their own software to solve a specific problem. Chapter 2 includes sufficient

details to allow a user to rapidly get a system up and running. For all readers it should be useful

to survey features that one would expect to see in a general purpose NLR program. It should be

emphasized that there is a difference between a general purpose NLR program and a program

written to quickly solve a specific problem. Indeed, using a language like MATLAB, some of my

students in a graduate course that I have been teaching for a number of years (Design and

Analysis of Experiments) have produced NLR code to solve specific homework problems.

Statistical software is available through the internet from a massive variety of sources. A Google

search for "statistical software" turned up 9.5 million hits! Some of the software is free and other

software programs are available for a price that can vary over a wide range. Some of the software

includes nonlinear regression applications. Refining the search by adding "nonlinear regression"

turned up over 600,000 hits. Many of these hits describe nonlinear regression modules that are

part of larger statistical packages. Further refining the search to S-plus, the number of hits was

over 26,000. Nonlinear regression software in S-plus is described by Venables and Ripley

[VE02]. Huet et. al. describe a program called NLS2 that runs under the R statistical software

environment as well as S-plus [HU03]. Refining the search to SPSS, the number of hits was over

30,000. The SPSS Advanced Statistics Manual includes details for nonlinear regression analyses

within SPSS [ZE98]. Refining the search to SAS, the number of hits was about 51,000. The

NLIN procedure in the SAS system is a general purpose nonlinear regression program and is

described in a paper by Oliver Schabenberger [SC98]. Refining the search to MATLAB, over

41,000 hits were noted. MATLAB m files for performing nonlinear regression analyses are

included in [CO99]. The MATLAB Statistical Toolbox includes a function called nlinfit for

performing nonlinear regression [www.mathworks.com/products/statistics].

In Section 6.2 features that are common to general purpose NLR programs are described and

features that are desirable but not available in all the programs are also described. In Section 6.3

the NIST Statistical Reference Datasets are discussed. These well-known datasets are used to

evaluate NLR programs and search algorithms. In Section 6.4 the subject of convergence is

discussed. For most users, performance of NLR programs is primarily based upon a single issue:

does the program achieve convergence for his or her problems of interest? In Section 6.5 a

problem associated with linear regression is discussed. Multi-dimensional modeling is discussed

in Section 6.6 and software performance is discussed in Section 6.7.

6.2 General Purpose Nonlinear Regression Programs

There are a number of general purpose nonlinear regression programs that can easily be obtained

and allow the user to run most problems that he or she might encounter. Some of the programs

are offered as freeware and some of the programs must be purchased. Some programs are offered

on a free trial basis but must then be purchased if the user is satisfied and wishes to use the

program after termination of the trial period. This section includes a survey of features that one

encounters while reviewing nonlinear regression software. The purpose of this chapter is to

provide the reader with the necessary background required to make a reasoned choice when

deciding upon which program to use for his or her specific applications.

When one works within the framework of a general purpose statistical software environment

(e.g., SAS, SPSS, S-plus, MATLAB Statistical Toolbox), a reasonable choice for nonlinear

regression is a program that is compatible with the environment. Data created by one module of

the system can then be used directly by the nonlinear regression module. Alternatively one can

use a general purpose nonlinear regression program that runs independently (i.e., not within a

specific statistical software environment). One problem with this alternative is data compatibility

but this need not be a major obstacle. Most statistical software environments are Excel

compatible, so if the nonlinear regression program is also Excel compatible, then data can be

easily moved from the statistical software environment through Excel to the nonlinear regression

program. In addition, ASCII text files can be used by almost all general purpose programs and

statistical environments.

To qualify as a general purpose nonlinear regression program I feel that as a minimum, the

following features should be included:

1) Mathematical models should be entered as input parameters.

2) The program should accept nonlinear models with respect to the unknown parameters

(and not just nonlinear with respect to the independent variables).

http://www.mathworks.com/products/statistics

3) There should be no need for the user to supply derivatives (neither analytical nor

numerical) of the mathematical model.

4) The program should be able to accommodate mathematical models that are multi-

dimensional in both the dependent and independent variables.

5) The user should be able to weight the data according to any weighting scheme of his

or her choosing.

6) The program should include a sophisticated convergence algorithm. The National

Institute of Standards nonlinear regression datasets (described in Section 6.3) provide

a rich variety of problems that can be used to test the quality of a program's ability to

achieve convergence.

In addition, there are a number of desirable features that one would like to see in a general

nonlinear regression program:

1) Allow the user to name the dependent and independent variables and the unknown

parameters.

2) Allow the user to define symbolic constants.

3) Allow specification of Bayesian estimators for the unknown parameters.

4) Include a simulation feature useful for designing experiments. (See Chapter 5 for a

discussion and examples related to this feature.)

5) Allow input of Excel text files.

6) Include a feature to generate an interpolation table that lists values of the dependent

variable and their standard deviations for a specified set of the independent variable

or variables.

7) Allow program usage from within a general purpose statistical or programming

environment.

8) Include a feature for generation of graphical output.

Treating mathematical models as input parameters is probably the most important feature of a

general purpose NLR program. If the user is forced to program a function for every problem

encountered, then the NLR program is not really "general purpose". If the user is working in an

interactive mode and notes that a particular function does not yield results of sufficient accuracy,

he or she should be able to enter a new function without having to exit the NLR program to

reprogram the function.

The need for symbolic constants is a feature that can be most useful for problems in which

convergence is difficult. This subject is discussed in Section 6.4.

There are several debatable features that are really a matter of user preference. Should the

program use a parameter file for specifying the parameters of a particular analysis or should the

program work through a GUI interface? Today, most computer programs (not just nonlinear

regression programs) are interactive and allow the user to specify what he or she wishes to do

thru a menu driven series of questions. For nonlinear regression, the number of parameters can

be considerable so if the program is accessed through a GUI interface, there should be some

method for shortcutting the process when the change from a previous analysis is minor. This

particular problem is avoided if parameter files are used. All one has to do is edit the parameter

file and make changes or perhaps copy the file under a new name and then change the new file.

The need for graphic output is a very reasonable user requirement, but should it be an integral

part of an NLR general purpose program? As long as one can easily port the data to another

program that supports graphics, then this should be a reasonable compromise. For example, if the

NLR program outputs text data, this output can then be inputted to a program like Excel to obtain

the necessary graphical output.

6.3 The NIST Statistical Reference Datasets

The U.S. National Institute of Standards and Technology (NIST) initiated a project to develop a

standard group of statistical reference datasets (StRD's). In their words the object of the project

was "to improve the accuracy of statistical software by providing reference datasets with certified

computational results that enable the objective evaluation of statistical software." One of the

specific areas covered was datasets for nonlinear regression. The NIST StRD project home page

can be accessed at:

http://www.itl.nist.gov/div898/strd/index.html

To examine the datasets, go into Dataset Archives and then Nonlinear Regression. A summary of

the NIST nonlinear regression datasets is included in Table 6.3.1:

Name Difficulty Parms Num

pts

Function

Misrala Lower 2 14 b1*(1-exp[-b2*x])

Chwirut1 Lower 3 214 exp[-b1*x]/(b2+b3*x)

Chwirut2 Lower 3 54 exp(-b1*x)/(b2+b3*x)

Lanczos3 Lower 6 24 b1*exp(-b2*x) +

b3*exp(-b4*x) + b5*exp(-b6*x)

Gauss1 Lower 8 250 b1*exp(-b2*x) +

b3*exp(-(x-b4)**2 / b5**2) +

b6*exp(-(x-b7)**2 / b8**2)

Gauss2 Lower 8 250 Same as Gauss1

DanWood Lower 2 6 b1*x**b2

Misralb Lower 2 14 b1 * (1-(1+b2*x/2)**(-2))

Kirby2 Average 5 151 (b1 + b2*x + b3*x**2) /

(1 + b4*x + b5*x**2)

Hahn1 Average 7 236 (b1+b2*x+b3*x**2+b4*x**3) /

(1+b5*x+b6*x**2+b7*x**3)

Nelson Average 3 128 b1 - b2*x1 * exp[-b3*x2]

MGH17 Average 5 33 b1 + b2*exp[-x*b4] +

b3*exp[-x*b5]

Lanczos1 Average 6 24 b1*exp(-b2*x) + b3*exp(-b4*x)

+ b5*exp(-b6*x)

Lanczos2 Average 6 24 Same as Lanczos1

Gauss3 Average 8 250 Same as Gauss1

Misralc Average 2 14 b1 * (1-(1+2*b2*x)**(-.5))

Misrald Average 2 14 b1*b2*x*((1+b2*x)**(-1))

Roszman1 Average 4 25 b1 - b2*x - arctan[b3/(x-b4)]/pi

http://www.itl.nist.gov/div898/strd/index.html
http://www.itl.nist.gov/div898/strd/index.html

Name Difficulty Parms Num

pts

Function

ENSO Average 9 168 b1 + b2*cos(2*pi*x/12) +

b3*sin(2*pi*x/12) +

b5*cos(2*pi*x/b4) +

b6*sin(2*pi*x/b4) +

b8*cos(2*pi*x/b7) +

b9*sin(2*pi*x/b7)

MGH09 Higher 4 11 b1*(x**2+x*b2) /

(x**2+x*b3+b4)

MGH10 Higher 3 16 b1 * exp[b2/(x+b3)]

Thurber

Higher 7 37 (b1 + b2*x + b3*x**2 +

b4*x**3) /

(1 + b5*x + b6*x**2 + b7*x**3)

BoxBOD Higher 2 6 b1*(1-exp[-b2*x])

Ratkwosky3 Higher 3 9 b1 / (1+exp[b2-b3*x])

Ratkowsky4 Higher 4 15 b1 / ((1+exp[b2-b3*x])**(1/b4))

Eckerle4 Higher 3 35 (b1/b2) *

exp[-0.5*((x-b3)/b2)**2]

Bennett5 Higher 3 154 b1 * (b2+x)**(-1/b3)

Table 6.3.1 Datasets from the NIST Nonlinear Regression Library

There are 27 different data sets included in the library including the actual data files (in text

format) and results from least squares analyses of the data. The datasets are classified by Level of

Difficulty (lower, average and higher), number of parameters (varying from 2 to 9), and number

of data points (varying from 6 to 250). The datasets including the mathematical models are listed

in Table 6.3.1. Each data set includes two different starting points: one near the solution and one

further away from the solution. Also included are the least squares values and their estimated

standard deviations. Results also include the sum of the squares of the residuals (i.e., S) and the

Residual Standard deviation (i.e., sqrt(S / (n-p)). The datasets include a number of challenging

problems that test the ability of a program to converge to a solution. However, the choice of

datasets is limited to mathematical models that include a single independent variable x. Another

limitation is that only unit weighting is used for the all problems. Details for one of the datasets

(BoxBOD) are shown in Figure 6.3.1.

The BoxBOD problem has only two unknown parameters (i.e., b1 and b2) and only six data

points and yet it is listed as higher in level of difficulty because of the difficulty of converging to

a solution from the Start 1 initial values.

One of the most well-known general purpose nonlinear regression programs is NLREG

(www.nlreg.com). They describe their results using the NIST datasets as follows: "The NIST

reference dataset suite contains 27 datasets for validating nonlinear least squares regression

analysis software. NLREG has been used to analyze all of these datasets with the following

results: NLREG was able to successfully solve 24 of the datasets, producing results that agree

with the validated results within 5 or 6 significant digits. Three of the datasets (Gauss1, Gauss2

and Gauss3) did not converge, and NLREG stopped with the message: Singular convergence.

Mutually dependent parameters? The primary suggested starting values were used for all

datasets except for MGH17, Lanczos2 and BoxBOD which did not converge with the primary

suggested starting values but did converge with the secondary suggested starting values."

http://www.nlreg.com/

The differences between the three Gauss datasets are in the data. A plot of the Gauss1 data is

shown in Figure 6.3.2. All three models include two Gaussian peaks with an exponentially

decaying background. The peaks in the Gauss3 dataset are much closer together than the peaks in

the other two datasets and that is why its level of difficulty is considered higher. However, NIST

lists all three datasets as either lower or average level of difficulty. I ran Gauss1, Gauss2 and

Gauss3 using REGRESS and had no problem converging from the primary suggested starting

values. My guess is that somehow an error was introduced in the NLREG tests for these three

datasets because it isn't logical that NLREG would fail for these and yet pass all the tests for the

higher level of difficulty.

Another available NLR general purpose program is LabFit which can be located at

http://www.angelfire.com/rnb/labfit/index.htm. Results for all the NIST datasets are included on

the website. In their words they "achieved convergence for all the primary starting values for all

the datasets and the results are statistically identical to the certified values".

Results for the NLR program Stata 8.1 can be seen at http://www.stata.com/support/cert/nist/.

They achieved convergence for all of the datasets but for one dataset of average difficulty

(MGH17) and 4 of higher difficulty (MGH09, MGH10, Eckerle4 and Ratkowsky4) they only

achieved convergence from the nearer starting points. Stata is a "complete, integrated statistical

package that provides everything needed for data analysis, data management, and graphics". The

NLR module is only one feature of the Stata package.

http://www.angelfire.com/rnb/labfit/index.htm
http://www.stata.com/support/cert/nist/

NIST/ITL StRD

Dataset Name: BoxBOD (BoxBOD.dat)

Description: These data are described in detail in Box, Hunter and

Hunter (1978). The response variable is biochemical oxygen demand

(BOD) in mg/l, and the predictor variable is incubation time in days.

Reference: Box,G.P., W.G.Hunter, and J.S.Hunter(1978).

 Statistics for Experimenters.

 New York, NY: Wiley, pp. 483-487.

Data: 1 Response (y = biochemical oxygen demand)

 1 Predictor (x = incubation time)

 6 Observations

 Higher Level of Difficulty

 Observed Data

Model: Exponential Class

 2 Parameters (b1 and b2)

 y = b1*(1-exp[-b2*x]) + e

Start 1 Start 2 Parameter Standard Deviation

b1=1 100 2.1380940889E+02 1.2354515176E+01

b2=1 0.75 5.4723748542E-01 1.0455993237E-01

Residual Sum of Squares: 1.1680088766E+03

Residual Standard Deviation: 1.7088072423E+01

Degrees of Freedom: 4

Number of Observations: 6

Data: y x

 109 1

 149 2

 149 3

 191 5

 213 7

 224 10

Figure 6.3.1 Data and Results for NIST Dataset BoxBOD

Figure 6.3.2 Gauss1 data from NIST Nonlinear Regression Library

Results for the program Datafix (a product of Oakdale Engineering) are available at

http://www.curvefitting.com/datasets.htm. They achieved convergence for all datasets "without

using analytical derivatives" but do not specify if this was from the primary or secondary starting

points.

An Excel based NLR program is included as part of the XLSTAT package. Details can be

obtained at http://www.xlstat.com/indexus.html. This package runs within Excel and they

include the Ratkowsky4 example in their demonstration. Their solution requires programming of

the derivatives of the modeling function and therefore cannot be considered as a general purpose

NLR program. However, they have programmed complete solutions including derivatives for a

limited number of functions.

An NLR program is included in the TSP econometrics package. The results for the NIST

nonlinear reference datasets can be seen on the TSP International website:

http://www.tspintl.com/products/tsp/benchmarks/nlstab.txt

They achieved convergence on all the datasets except Lanczos1. No mention is made regarding

the starting points for the various tests.

The LIMDEP program (a product of Econometric Software) is another general purpose statistical

econometric package. Details regarding the LIMDEP program can be obtained at:

http://www.limdep.com/programfeatures_accuracy.shtml

The LIMDEP NLR module was tested using the NIST datasets as well as other benchmark

datasets described by McCullough [MC99]. In their own words: "LIMDEP was able to solve

nearly all the benchmark problems using only the program default settings, and all of the rest with

only minor additional effort." This statement makes a lot of sense. Most general purpose NLR

programs have default settings but for difficult problems, some minor adjustments in the

parameters can lead to convergence. This subject is considered in Section 6.4.

6.4 Nonlinear Regression Convergence Problems

In Section 6.3 the NIST dataset library of NLR problems is discussed. The library has been used

extensively to test NLR computer programs. The library has also been used to test convergence

algorithms. The choice of an algorithm is a fundamental issue when developing NLR software

and there are a number of options open to the software developer. It should be emphasized that

there is no single algorithm that is best for all problems. What one hopes to achieve is an

algorithm that performs well for most problems. In addition, for problems that are difficult to

converge, a good NLR program should offer the user features that can help achieve convergence.

In this section some of the features that enhance convergence are discussed using examples from

the NIST library.

There are two basic classes of search algorithms that can be used for NLR problems:

1) Algorithms based upon usage of function derivatives to compute a vector of changes in

the manner described in Section 2.4.

2) Stochastic algorithms that intelligently search thru a defined unknown parameter space.

http://www.curvefitting.com/datasets.htm
http://www.xlstat.com/indexus.html
http://www.tspintl.com/products/tsp/benchmarks/nlstab.txt
http://www.tspintl.com/products/tsp/benchmarks/nlstab.txt
http://www.limdep.com/programfeatures_accuracy.shtml
http://www.limdep.com/programfeatures_accuracy.shtml

The straight forward Gauss-Newton (GN) algorithm (Equations 2.4.16 and 2.4.17) is the starting

point for most algorithms of the first type. This simple algorithm leads to convergence for many

NLR problems but is not sufficient for more difficult problems like some of those encountered in

the NIST datasets. To improve the probability of achieving convergence, Equation 2.4.16 can be

replaced by:

 kkk A*cafaa 0  k = 1 to p (6.4.1)

where caf is called the convergence acceleration factor. As a default caf is one, but for difficult

problems, using a value of caf < 1 can sometimes lead to convergence. A more sophisticated

approach is to calculate the value of S computed using the new values of ak and compare this

value with the value of S computed using the old values. As long as the value of S decreases,

continue along this line (i.e., increase caf). However, if the reverse is true (i.e., Snew > Sold) the

value of caf is decreased (even to a negative number). It should be emphasized that caf is an

input parameter and all changes of caf should be done algorithmically within the program for a

given iteration. For the next iteration the value of caf is restarted at the input value. Sometimes it

turns out that along the direction suggested by the A vector, S rises in both directions (i.e., caf > 0

and caf < 0). When this happens the algorithm can be modified to alter the direction. The

Marquardt algorithm (sometimes called the Levenberg-Marquardt algorithm) is very popular and

is used to modify the basic Gauss Newton algorithm [LE44, MA63, GA92]. Equations 2.4.16 or

6.4.1 are still used but the A vector is computed using a modified procedure. Instead of

computing the A vector using Equation 2.4.9, the following equation is used:

   VDCA
1

  (6.4.2)

The matrix D is just the diagonal of the C matrix (with all off diagonal terms set to zero) and is

a scalar parameter. By trying several different values of  a new direction can often be found

which leads to a better reduction of S then achieved using Equation 2.4.16 or 6.4.1.

Tvrdik and Krivy survey several standard algorithms using the higher difficulty problems from

the NIST datasets [TV04]. This paper can also be accessed online at

http://albert.osu.cz/tvrdik/down/files/comp04.pdf. The algorithms used are those included in

several NLR standard packages: NCSS 2001 which uses a Levenberg-Marquardt (LM) algorithm

S-PLUS 4.5 which uses a GN algorithm, SPSS 10.0 which uses a modified LM algorithm and

SYSTAT 8.0 which includes both a modified GN algorithm and an algorithm based upon the

simplex method. Their results are shown in Table 6.4.1.

http://albert.osu.cz/tvrdik/down/files/comp04.pdf

 NCSS SYST GN SYST Sim S-Plus SPSS

Start: 1 2 1 2 1 2 1 2 1 2

Bennett5 2 1 OK OK F F OK OK OK OK

BoxBOD F F OK OK F F OK OK F OK

Eckerle4 F 3 OK OK F F F OK OK OK

MGH09 F F F OK OK OK F 2 OK OK

MGH10 F F OK OK F OK F OK F F

Ratkowsky3 OK OK OK OK F F F OK OK OK

Ratkowsky4 F 3 OK OK F F F OK OK OK

Thurber F F OK OK OK OK F F F F

Table 6.4.1 Comparison of algorithms for NIST datasets.

For each dataset, the programs were started from the far (1) and near (2) points as listed in the

NIST reference datasets. An entry of F means that the program failed to converge and OK means

that it did converge and S was accurate to at least 4 significant digits. A numerical entry means

that it converged to 1, 2 or 3 significant digits. Clearly the SYSTAT program using the modified

GN algorithm outperformed the other program but this does not mean that a GN algorithm is

necessarily best. It does, however, prove that by cleverly modifying the basic algorithm one can

achieve better results.

One of the easiest features that can be employed in an NLR program is to limit the search for

some or all of the unknown parameters. For example, consider the BoxBOD dataset from the

NIST library. Details are shown in Figure 6.3.1. Results obtained using the REGRESS program

with only the default parameters are shown in Figure 6.4.1. An examination of the results

shows that the value of B2 becomes a huge negative number. Looking at the data in Figure 6.3.1

and the function used to specify Y we see that Y increases with X so B2 must be a positive

number. Setting a value of B2MIN = 0.001 and rerunning the program, the results in Figure

6.4.2 are obtained after 80 iterations. The ability to specify minimum and maximum values for

the unknown parameters is an essential feature in a general purpose NLR program.

PARAMETERS USED IN REGRESS ANALYSIS: Thu Dec 02, 2004

 INPUT PARMS FILE: boxbod.par

 INPUT DATA FILE: boxbod.par

 REGRESS VERSION: 4.10, Nov 15, 2004

 STARTREC - First record used : 1

 N - Number of recs used to build model : 6

 NO_DATA - Code for dependent variable -999.0

 NCOL - Number of data columns : 2

 NY - Number of dependent variables : 1

 YCOL1 - Column for dep var Y : 1

 SYTYPE1 - Sigma type for Y : 1

 TYPE 1: SIGMA Y = 1

 M - Number of independent variables : 1

 Column for X1 : 2

 SXTYPE1 - Sigma type for X1 : 0

 TYPE 0: SIGMA X1 = 0

Analysis for Set 1

 Function Y: B1*(1-EXP[-B2*X])

 EPS - Convergence criterion : 0.00100

 CAF - Convergence acceleration factor : 1.000

 ITERATION B1 B2 S/(N.D.F.)

 0 1.00000 1.00000 46595.60

 1 89.08912 114.70610 12878.94

 2 185.20000 <-10^49 >10^0

 Singular matrix condition

Figure 6.4.1 Results for BoxBOD using Default Settings

There are some problems in which the values of the unknown parameters vary slowly but

convergence is very difficult to achieve. For such problems setting upper and lower bounds on

the parameters accomplishes nothing. The Bennett5 problem from the NIST datasets is an

example of such a problem. Using the far starting points for the 3 unknowns, REGRESS required

over 536,000 iterations to achieve convergence! Using the near starting points the results were

not much better: over 390,000 iterations were required. REGRESS uses a modified GN

algorithm but if the progress for an iteration is not sufficient it then uses an LM algorithm. A

better approach for problems of this type is to use a stochastic algorithm. Stochastic algorithms

avoid the need for function derivatives. A search space is defined by setting minimum and

maximum values for all the unknown parameters. A random number generator is used to set a

starting point within the space and then a heuristic is used to find the next point. In the same

paper as mentioned above [TV04], Tvrdik and Krivy describe 5 different stochastic algorithms

and then compare them using the same datasets as listed in Table 6.4.1. Their results show large

performance differences from problem to problem and algorithm to algorithm. Four of the five

managed to achieve solutions for the Bennett5 problem.

Another option for problems that are difficult to converge is to use symbolic constants. For

example, the parameter file for the REGRESS runs for the Bennett5 problem included the

following function specification:

 unknown b1, b2, b3;

 y ='b1 * (b2+x)^(-1/b3)'

Knowing the solution in advance, and noticing that the values of the unknowns were progressing

in the correct direction, I just let REGRESS run until convergence was achieved. However, if the

amount of data had been much greater than the 154 data records associated with this dataset, the

time required to reach convergence would have been very large indeed. An alternative to this

approach is to use symbolic constants. For example, one could hold b1 constant and do a two

parameter fit using the following function specification:

 constant b1;

 unknown b2, b3;

 y ='b1 * (b2+x)^(-1/b3)'

Once least square values of b2 and b3 are located for the inputted value of b1 the value can be

changed and a new combination can be located. Comparing the values of S obtained for the

different values of b1, one can home in on a region likely to contain the best value of b1. Once

this region has been identified, one could then return to the original function specification to

make the final 3 parameter search. The number of iterations using this procedure is much less

than starting the process searching for all 3 parameters but requires a lot of user intervention and

judgment.

For very difficult problems a combination approach is sometimes used. The process is started by

doing a very course grid search through the entire space just computing S at all points in the grid.

The best region to start the search is around the point for which S is a minimum. All the

unknowns are then bounded within this region and a detailed search is then initiated. If

convergence is still a problem, then the use of symbolic constants and/or a stochastic algorithm

can be used to further reduce the size of the search space.

 PARAMETERS USED IN REGRESS ANALYSIS: Thu Dec 02, 2004

 ITERATION B1 B2 S/(N.D.F.)

 0 1.00000 1.00000 46595.60

 1 89.08912 114.70610 12878.94

 2 185.20000 0.00100 46567.68

 3 9985.49 0.05420 7946907.22

 4 -1977.29 0.07206 917128.67

 5 -907.83514 0.00172 51485.53

 6 7854.00 0.00100 28275.45

 7 15098.02 0.00193 6215.57

 8 14635.85 0.00203 6194.60

 - - - - - - - - - - - - - - - - - - -

 - - - - - - - - - - - - - - - - - - -

 79 213.87781 0.54643 292.00568

 80 213.82425 0.54706 292.00238

 POINT X1 Y SIGY YCALC

 1 1.00000 109.00000 1.00000 90.10764

 2 2.00000 149.00000 1.00000 142.24097

 3 3.00000 149.00000 1.00000 172.40360

 4 5.00000 191.00000 1.00000 199.95134

 5 7.00000 213.00000 1.00000 209.17267

 6 10.00000 224.00000 1.00000 212.91397

 PARAM INIT_VALUE MINIMUM MAXIMUM VALUE SIGMA

 B1 1.00000 Not Spec Not Spec 213.81258 12.35691

 B2 1.00000 0.00100 Not Spec 0.54720 0.10452

 Variance Reduction: 88.05

 S/(N - P) : 292.00223

 RMS (Y - Ycalc) : 13.95235

 Figure 6.4.2 Results for BoxBOD using B2MIN = 0.001

6.5 Linear Regression: a Lurking Pitfall

A general purpose NLR (nonlinear regression) program can easily handle linear regression

problems. Software developed for nonlinear problems can be used with no change to solve linear

problems. However, there is a hidden danger in using linear models that often plagues new users

of curve-fitting software. When data is available and there is no physically meaningful

mathematical model to explain the variation of a dependent variable y as a function of x, the most

tempting approach to the problem is to use a simple polynomial:

12

321
 p

p xa...xaxaay (6.5.1)

If one is only looking for an adequate function to predict y for any value of x then why not just

start with a straight line (i.e., p = 2) and increase p until the average root-mean-square (RMS)

error is acceptable? This approach, although theoretically very appealing, can lead to very

difficult numerical problems that arise due to the fact that computers work to a finite number of

significant digits of accuracy.

To explain the problem, consider data in which the values of x are equally spaced from 0 to 1 and

unit weighting is used. The derivative of Equation 6.5.1 with respect to ak is simply xk-1 so from

Equations 2.4.14 and 2.4.15 the terms of the C matrix and the V vector are:

 
























ni

i

kjk
ni

i

j
ni

i kj

jk xxx
a

f

a

f
C

1

21

1

1

1

 (6.5.2)

 















ni

i

k
i

ni

i k

ik xY
a

f
YV

1

1

1

 (6.5.3)

Once we have computed the terms of the C matrix and the V vector we use Equation 2.4.9 to

solve for the vector A:

 VCA
1 (2.4.9)

This vector includes all p values of the ak's. We can estimate the value of Cjk by using the

following approximation:

  
1

1

0

22

1

2


  







kj

n
dxxnxnxC kj

avg
kj

ni

i

kj
jk (6.5.4)

For example, for p=4 the C matrix is approximately:





















71615141

61514131

51413121

4131211

////

////

////

///

nC (6.5.5)

For those readers familiar with linear algebra, they will recognize this matrix as the well known

Hilbert matrix and it has the following property:

     p.ln/p.p.
eCcond

51105353
1010  (6.5.6)

In other words, as the number of unknowns (i.e., p) increases, the condition of the matrix (the

ratio of the largest to smallest eigenvalues of the matrix) increases exponentially. Using cond(C)

we can estimate the errors in the ak's due to errors from the terms of the V vector:

  
V

V
Ccond

A

A 
 (6.5.7)

This equation means that the fractional errors in the terms of the A vector are no more than

cond(C) times the fractional errors in the V vector. For example, let us assume that the values of

Y are accurate to 5 decimal digits so that the fractional errors in the terms of the V vector are of

the order of 10-5. If cond(C) is about 100, then the fractional errors in the terms of the A vector

are at worst of the order of 10-3. This loss of accuracy comes about due to the process of

inverting the C matrix. In other words, if cond(C) is about 100 we can expect a loss of about 2

digits of accuracy in solving Equation 2.4.6 (i.e., CA = V). A set of linear equations like

Equation 2.4.6 is said to be "ill-conditioned" when the value of the condition become a large

number.

Examining Equations 6.5.6 and 6.5.7, the pitfall in using Equation 6.5.1 for curve fitting can be

seen. As p increases, C becomes increasingly ill-conditioned. The log10 of cond(C) is the

maximum number of decimal digits that might be lost in solving Equation 2.4.6. So if p = 5, 6 or

7 then the condition is 107.5, 109 or 1010.5 and the number of digits of accuracy that might be lost

are 7.5, 9 or 10.5! We see that even though Equation 6.5.1 is a very tempting solution for

obtaining a simple equation relating y to x, it is increasingly numerically problematical as p

increases.

The NIST datasets include linear as well as nonlinear problems. The most difficult problem is the

'Filippelli problem'. This dataset has 82 point and the proposed model is Equation 6.5.1 with p

=11. The LIMDEP website includes their solution to this problem and they describe the problem

as follows:

 "LIMDEP's linear regression computations are extremely accurate. The 'Filippelli problem' in the

NIST benchmark problems is the most difficult of the set. Most programs are not able to do the

computation at all. The assessment of another widely used package was as follows: Filippelli test:

XXXXX found the variables so collinear that it dropped two of them -- that is, it set two coefficients

and standard errors to zero. The resulting estimates still fit the data well. Most other statistical

software packages have done the same thing and most authors have interpreted this result as

acceptable for this test. We don't find this acceptable. First, the problem is solvable. See LIMDEP's

solution below using only the program defaults - just the basic regression instruction. Second,

LIMDEP would not, on its own, drop variables from a regression and leave behind some arbitrarily

chosen set that provides a 'good fit.' If the regression can't be computed within the (very high)

tolerance of the program, we just tell you so. For this problem, LIMDEP does issue a warning,

however. What you do next is up to you, not the program."

It should be emphasized that the Filippelli problem is a problem that was proposed to test

software and not a real problem in which Mr. Filippelli was actually trying to get usable numbers.

If one proceeds using Equation 6.5.1 directly, consider the loss of accuracy using a 10th order

polynomial (i.e., p = 11) to fit the data. The number of digits of accuracy lost is at a maximum

16.5! Even if the values of Y are true values with no uncertainty, just inputting them into double

precision numbers in the computer limits their accuracy to about 15 digits. So a loss of 16.5

digits makes the results completely meaningless. The C matrix is so ill-conditioned that it is no

wonder that most packages fail when trying to solve the Filippelli problem. I tried running this

problem using REGRESS and could not progress beyond p = 9.

So how did LIMDEP succeed while others have failed? I don’t know the algorithm used by

LIMDEP to solve problems based upon Equation 6.5.1, but if I was interested in creating

software to solve such problems I would use orthogonal polynomials [RA78, WO71]. The idea

originally proposed by G. Forsythe [FO57] is to replace Equation 6.5.1 with the following:







pk

k

kk xuay
0

)((6.5.8)

The uk(x) terms are a set of p polynomials all orthogonal to one another. Orthogonality for a

particular set of data and a particular weighting scheme implies the following:

 0)()(
1






ni

i

ikiji xuxuw for j ≠ k. (6.5.9)

Equation 2.4.5 is applicable to all linear models and is therefore applicable to Equation 6.5.8.

Substituting u for g in Equation 2.4.5 we get p+1 equations of the following form (where the

index k is from 0 to p):

  kiikpipkiki uYwuuwa...uuwauuwa 1100 (6.5.10)

Applying Equation 6.5.9 to 6.5.10 we end up with p+1 equations for ak that can be solved

directly:

  kiikkik uYwuuwa k = 0 to p (6.5.11)





kki

kii

k
uuw

uYw
a k = 0 to p (6.5.12)

If a set of polynomials can be constructed with this property (i.e., Equation 6.5.9), then we can

compute the terms of the A vector without inverting the C matrix. Or looking at it another way,

the diagonal terms of the C-1 matrix are the inverses of the diagonal terms of the C matrix and all

the off-diagonal terms are zero. Forsythe suggests the following scheme for computing

polynomials satisfying Equation 6.5.9:

 1)(0 xu (6.5.13a)

)()()(011 xuxxu  (6.5.13b)

)()()()(01122 xuxuxxu   (6.5.13c)

 .

)()()()(211 xuxuxxu ppppp    (6.5.13d)

The  'sand 's are computed as follows:














n

i

iki

n

i

ikii

k

xuw

xuwx

0

2
1

0

2
1

))((

))((

 (6.5.14)










n

i

iki

n

i

iki

k

xuw

xuw

0

2
1

0

2

))((

))((

 (6.5.15)

The order of the computations is to first compute 1and the values of u1, then1,2and the

values of u2, then2, etc. until all the u's are known. Using Equation 6.5.12 the ak's can be

computed and thus all terms required by Equation 6.5.8 are known. As an example consider the

data in Table 6.5.1.

Point Y x

1 7.05 0

2 16.94 1

3 31.16 2

4 48.88 3

5 71.31 4

6 96.81 5

7 127.21 6

Table 6.5.1 Data for Orthogonal Polynomial Example

Assuming unit weighting (i.e., wi = 1), since u0 = 1, from Equation 6.5.14 we compute 1as

follows:

 

 
3

7

21










n

i

n

i

i

u

ux

0

2

0

0

2

0

1

and therefore from Equation 6.5.13b u1 = x – 3. We next compute 1 and 2 using Equations

6.5.15 and 6.5.14:

 

 
4

7

28

7

9410149













n

i

n

i

u

u

0

2

0

0

2

1

1

 

 
3

28

84

9410149

542040240















n

i

n

i

i

u

ux

0

2

1

0

2

1

2

and therefore from Equation 6.5.13c u2 =(x-3)(x – 3) – 4 = x2 - 6x + 5. In a similar manner we

can compute 2 =3 and 3 = 3 and thus u3 = (x-3)u2 – 3(x-3) = x3-9x2+20x-6. To use the uk's to

fit the data we next must compute a0, a1, a2 and a3 using Equation 6.5.12. The details of the

calculation are included in Table 6.5.2.

The results in Table 6.5.2 include four different fits to the data:

 

   

321

33221100

2

221100

1100

00

003890004201200557

560042301200557

301200557

0557

u.u.u..

uauauauay

xx.x..

uauauay

x..uauay

.uay













The terms S / (n-p-1) are the sums of the squares of the residuals divided by the number of

degrees of freedom. Using the goodness-of-fit criterion explained in Section 3.3 we note that the

parabolic equation yields the best results because S /(n-p-1) is minimized for p =2 (i.e., 3 terms).

We can convert this equation to the simple form of Equation 6.5.1:

   

2

2

00429867047

004200426012000425012030557

x.x..y

x.x.*..*.*.y





i Yi xi u0 u1 u2 u3

1 7.05 0 1 -3 5 -6

2 16.94 1 1 -2 0 6

3 31.16 2 1 -1 -3 6

4 48.88 3 1 0 -4 0

5 71.31 4 1 1 -3 -6

6 96.81 5 1 2 0 -6

7 127.21 6 1 3 5 6

  kiuY 393.36 560.37 168.37 0.84

  2
ku 7 28 84 216

 ak 57.05 20.01 2.004 0.0038

9

 S 11552.5 337.7 0.198 0.194

 S/(n-p-1) 1925.4 67.54 0.049 0.065

Table 6.5.2 Fitting Data using Orthogonal Polynomials

Regardless of the value of p the resulting equation derived using orthogonal polynomials can be

converted to the simple very appealing polynomial form (i.e., Equation 6.5.1). For difficult linear

problems such as the Filippelli problem this technique avoids the numerical pitfalls arising from

the direct use of 6.5.1.

6.6 Multi-Dimensional Models

An important feature of general purpose NLR (nonlinear regression) programs is the ability to

handle multi-dimensional problems. Throughout the book the discussion has primarily been

about the relationship between a dependent scalar variable y and an independent scalar variable x.

However, there are many problems throughout many fields of science and engineering where

either x or y or both are vector variables. To test NLR programs it is useful to have a few

examples of problems of these types. Unfortunately the nonlinear regression NIST datasets are

limited to problems in which x and y are both scalars.

The theory and use of the GraphPad Prism program is included in a book written by H.

Motulsky and A. Christopoulos [MO03]. The book can be downloaded from the GraphPad

Software website (www.graphpad.com) and includes a very nice example of a problem in which

the dependent variable y is a vector. Although GraphPad Prism is a general purpose NLR

program, the book emphasizes analysis of biological and pharmaceutical experiments. Using

GraphPad terminology, global models are models in which y is a vector and some of the

unknowns are shared between the separate models for the components of y. A GraphPad example

relevant to the pharmaceutical industry is the use of global models to analyze the dose-response

curves of two groups (a treated group and a control group). The purpose of the experiment is to

measure what they call ec50 (the dose concentration that gives a response half-way between the

minimum and maximum responses. For this experiment the x variable is the log of the dose, the

first component of the y vector is the response of the control group and the second component is

the response of the treated group. The problem is well documented in their book and data is

included so that the problem can be used as a test dataset for any NLR program.

http://www.graphpad.com/

The experiment was analyzed using REGRESS and the results are very close to the results

obtained with Graphpad Prism. The equations were specified as follows:

dependent ycont, ytreat;

independent x;

unknown bottom, top, hillslope, logec50c,

 logec50t;

ycont = 'bottom+(top-bottom)/

 (1+10^((logec50c-x)*hillslope))'

ytreat = 'bottom+(top-bottom)/

 (1+10^((logec50t-x)*hillslope))'

The two components of the y vector are ycont and ytreat. The unknown parameters shared by

both equations are bottom, top and hillslope. The two remaining unknowns are the

logs of ec50 for the control and treatment groups (i.e., logec50c and logec50t). The data is

included in Table 6.6.1. The results are seen in Figure 6.6.1. REGRESS required 9 iterations to

converge to the solution. The alternative to the global approach for this problem is to treat each

curve separately. The reason for treating this problem using a global model is explained in the

Graphpad document: the resulting accuracies for the values of ec50 are reduced considerably

using global modeling. The number of degrees of freedom for this problem (i.e., n-p) is 10 – 5 =

5.

Point x (log dose) Ycont Ytreat

1 -7.0 165 124

2 -6.0 284 87

3 -5.0 442 195

4 -4.0 530 288

5 -3.0 573 536

Table 6.6.1 Data for dose-response curve analysis from Graphpad.

REC Y-INDEX X YCONT SIGYCONT CALC_VALUE

 1 1 -7.00000 165.000 1.00000 152.28039

 2 1 -6.00000 284.000 1.00000 271.95980

 3 1 -5.00000 442.000 1.00000 455.54116

 4 1 -4.00000 530.000 1.00000 549.35957

 5 1 -3.00000 573.000 1.00000 573.06096

REC Y-INDEX X YTREAT SIGYTREAT CALC_VALUE

 1 2 -7.00000 124.000 1.00000 112.35928

 2 2 -6.00000 87.000 1.00000 123.13971

 3 2 -5.00000 195.000 1.00000 172.89774

 4 2 -4.00000 288.000 1.00000 321.78672

 5 2 -3.00000 536.000 1.00000 491.61468

PARAMETER INIT_VALUE MINIMUM MAXIMUM VALUE SIGMA

 BOTTOM 0.00000 Not Spec Not Spec 109.781 27.807

 TOP 1000.00 Not Spec Not Spec 578.939 34.182

HILLSLOPE 1.00000 Not Spec Not Spec 0.72458 0.1845

 LOGEC50C -7.00000 Not Spec Not Spec -5.61755 0.1963

 LOGEC50T -2.00000 Not Spec Not Spec -3.88429 0.1909

 Variance Reduction: 97.67 (Average)

 VR: YCONT 99.26

 VR: YTREAT 96.08

 S/(N - P) : 1181.32

 RMS (Y - Ycalc) : 24.30351 (all data)

 RMS(Y1-Ycalc): 13.15230

 RMS(Y2-Ycalc): 31.75435

Figure 6.6.1 Results from REGRESS analysis of data in Table 6.6.1.

A second example in which y is a vector is included in Section 6.8. A problem that demonstrates

modeling with two independent variables was included in my first book [WO67]. This problem

was related to a measurement of parameters related to the neutronics of heavy water nuclear

reactors. The model was based upon the following equation:

)1)(1(

)1)(1(

2221

1211

xaxa

xaxa
y




 (6.6.1)

The unknowns a1 and a2 must be positive but there is no guarantee that the method of least

squares will satisfy this requirement. However, we can force positive values by simply using b2

in place of a. The modified equation is thus:

)1)(1(

)1)(1(

2
2
22

2
1

1
2
21

2
1

xbxb

xbxb
y




 (6.6.2)

The two unknowns are now b1 and b2 and regardless of the resulting signs of b1 and b2, the

squared values are always positive. It should be noted that there are four possible solutions: both

b1 and b2 can be positive or negative. Depending upon the initial guesses for b1 and b2, if

convergence is achieved, the solution will be close to one of the four possibilities. The data for

this problem is included in Table 6.6.2 and the results of the REGRESS analysis are seen in

Figure 6.6.2. Note that for this problem since the 's vary from point to point Equation 2.3.7

must be used to properly weight the data. The initial guesses were b1 = 1 and b2 = 10 and

convergence was achieved with 3 iterations.

PARAM INIT_VALUE MINIMUM MAXIMUM VALUE SIGMA

 B1 1.00000 Not Spec Not Spec 1.61876 0.22320

 B2 10.00000 Not Spec Not Spec 5.29172 0.34342

 Variance Reduction: 99.32

 S/(N - P) : 6.98221

 RMS (Y - Ycalc) : 0.01946

 RMS ((Y-Ycalc)/Sy): 2.62056

Figure 6.6.2 Results from REGRESS analysis of data in Table 6.6.2.

Point Y y x1 x1 / x1 x2 x2 / x2

 1 0.7500 0.01000 0.0137 0.0056 0.0258 0.0057

 2 0.5667 0.00833 0.0137 0.0056 0.0459 0.0065

 3 0.4000 0.00620 0.0137 0.0056 0.0741 0.0070

 4 0.8750 0.01243 0.0240 0.0086 0.0320 0.0068

 5 0.7000 0.01022 0.0240 0.0086 0.0453 0.0057

 6 0.5750 0.00863 0.0240 0.0086 0.0640 0.0054

 7 0.3800 0.00586 0.0240 0.0086 0.0880 0.0055

 8 0.5750 0.00863 0.0260 0.0093 0.0666 0.0122

 9 0.2967 0.00777 0.0260 0.0093 0.1343 0.0134

10 0.1550 0.00290 0.0260 0.0093 0.2291 0.0140

11 0.0900 0.00189 0.0260 0.0093 0.3509 0.0143

Table 6.6.2 Modeling Data for Analysis of Equation 6.6.2.

Note that the value of b1 is measured to 100 * 0.223 / 1.619 = 13.8% accuracy and b2 is measured

to 6.5% accuracy, but what we are really interested in are the values of a1 and a2 and their

associated 's. In general if we have v as a function of u we can relate v to u as follows:

2

2












 uv

u

f
 where  ufv  (6.6.3)

For v = u2 from Equation 6.6.3 we get:

  22
2 uv u  where

2
uv  (6.6.4)

Dividing the equation by v2 = u4 we end up with the following simple relationship:

22
2



















uv

uv 
 where

2
uv  (6.6.5)

In other words the relative uncertainty in v is twice as large as that for u. Using Equation 6.6.5

we see that the relative uncertainties of the a 's are twice those of the b 's. Thus for the problem in

Figure 6.6.2, a1 = 1.6192 = 2.621 and a1 = 2.621*2*0.138 = 0.723. Similarly, a2 = 27.99 and a2

= 3.64. It is interesting to note that REGRESS can solve this problem directly for the a 's by

replacing Equation 6.6.1 by the following alternative:

))(1)()(1(

))(1)()(1(

2221

1211

xaabsxaabs

xaabsxaabs
y




 (6.6.6)

The abs (absolute) operator is a valid REGRESS operator that can be used in any function

specification.

6.7 Software Performance

There are many ways to measure the performance of NLR (nonlinear regression) programs but

for most problems the only relevant measure is the ability to converge to a solution for difficult

problems. The NIST datasets are very useful for testing the ability of NLR programs to converge

and this subject was considered in Sections 6.3 and 6.4. However, there are some problems

where software performance metrics other than convergence are important. In particular,

problems in which the amount of data is large, the time required to converge to a solution may

become important. Another area where time is important is for calculations embedded within real

time systems (e.g., anti-missile missile systems). When decisions must be made within a fraction

of a second, if an NLR calculation is part of the decision making process, it is important to make

the calculation as fast as possible. For real time applications general purpose NLR software

would never be used. The calculation would be programmed to optimize speed for the particular

system and mathematical model under consideration.

Since time is dependent upon hardware, one would prefer measures that are hardware

independent. In this section some useful measures of performance (other than the ability to

converge) are discussed. The total time that a program requires to achieve convergence for a

particular program and a particular computer is approximately the following:

 Converge_Time = Num_Iterations * Avg_Time_per_Iter (6.7.1)

The number of iterations required to achieve convergence is of course problem dependent but it

can be used as a measure of performance when used for comparisons with common data sets such

as the NIST datasets. The average time per iteration is of course computer dependent, but the

effect of the computer is only a multiplicative speed factor:

 Avg_Time_per_Iter = Speed_Factor * Avg_Calcs_per_Iter (6.7.2)

For traditional algorithms such as Gauss-Newton (GN) or Levenberg-Marquardt (LM) or some

sort of combination, the average number of calculations per iteration can be broken down into 2

major terms:

 Avg_Calcs_per_Iteration = Avg_CA_Calcs + Avg_S_Calcs (6.7.3)

The first term is a measure of the effort to compute the C matrix and then the A vector times the

average number of times this operation is performed per iteration. The second term is a measure

of the effort to compute the weighted sum-of-squares S times the average number of times this

operation is performed per iteration. Both terms are proportional to n, the number of data points.

The first term also has a component that is proportional to p3 (the complexity of solving p

simultaneous equations).

These equations are meaningless for people evaluating existing software as the actual numbers

for a given problem are usually unavailable to the normal user. However, for those interested in

developing software for performing NLR analyses for problems with important speed

requirements, these equations give some indication where one should concentrate the effort at

achieving speed.

For stochastic algorithms, these equations are not applicable. The concept of iterations is not

really relevant. The entire calculation becomes essentially a series of calculations of S. Whether

or not this results in a faster overall computation is not obvious and clearly the speed of such

algorithms is problem dependent.

6.8 The REGRESS Program

Throughout the book results for a number of examples have been obtained using the REGRESS

program. The reason why I have chosen REGRESS is quite simple: I wrote it. The program can

be downloaded from: www.technion.ac.il/wolberg. The history of the development of this

program goes back to my early career when I was in charge of designing a sub-critical heavy

water nuclear reactor facility. One of the experiments that we planned to run on the facility

involved a nonlinear regression based upon Equation 6.6.2. In the 1960's commercial software

was rare so we had no choice other than writing our own programs. It became quite apparent that

I could generalize the software to do functions other than Equation 6.6.2. All that had to be done

was to supply a function to compute f(x) and another function to compute the required

derivatives. We would then link these functions to the software and could thus reuse the basic

program with any desired function. At the time we called the program ANALYZER.

In the early 1970's I discovered a language called FORMAC that could be used for symbolic

manipulation of equations. FORMAC was compatible with FORTRAN and I used FORTRAN

and FORMAC to write a program similar to ANALYZER and I called the new program

REGRESS. The REGRESS program accepted equations as input quantities. Using FORMAC,

the program automatically generated equations for the derivatives and created FORTRAN

subroutines that could then be used to perform the nonlinear regression (NLR). All these steps,

including compilation and link-editing of the subroutines, were performed automatically without

any user intervention. The REGRESS program became a commercial product on the NCSS time-

sharing network and I had the opportunity to work with a number of NCSS clients and learned

about many different applications of NLR.

In the mid 1970's I realized that with languages that support recursive program, I could avoid the

need to externally compile subroutines. Recursion is the ability to call a subroutine from within

itself. Using recursion, it became a doable task to write a routine to symbolically differentiate

functions. Using PL/1 I rewrote REGRESS and added many new features that I realized were

desirable from conversations with a number of users of REGRESS. I've returned to the

REGRESS program on many occasions since the original version. In the 1980's I started teaching

a graduate course called Design and Analysis of Experiments and I supplied REGRESS to the

students. Many of the students were doing experimental work as part of their graduate research

and the feedback from their experiences with REGRESS stimulated a number of interesting

developments. In the early 1990's I rewrote REGRESS in the C language. Through the many

version changes REGRESS has evolved over the years and is still evolving.

www.technion.ac.il/wolberg

The REGRESS program lacks some features that are included in other general NLR programs.

Some students who have recently used REGRESS have suggested that the program should have a

GUI (Graphic User Interface) front end. Such a GUI would give REGRESS the look and feel of

a modern program. Personally I have my doubts that this will make the program appreciably

more user-friendly and have so far resisted creating such an interface. A more serious problem

with REGRESS was the need to create data files in a format that the program could understand.

Many users of the program gather data that ends up in an Excel Spread Sheet. The problem for

such users was how to get the data into REGRESS. It turned out that the solution was quite

simple: Excel allows users to create text files. A feature was added to accept Excel text files.

Another important issue was the creation of graphic output. One of the features of REGRESS is

that the entire interactive session is saved as a text file. The current method for obtaining

graphics output is to extract the output data from the text file and then input it into a program

such as Excel that supports graphics. Since this turns out to be a relatively painless process, the

need for REGRESS to generate graphic output is not a pressing issue.

The REGRESS program includes some features that are generally not included in other NLR

programs. The most important feature in REGRESS that distinguishes it from other general

purpose NLR programs is the Prediction Analysis (experimental design) feature described in

Chapter 5. Another important feature that I have not seen in other general purpose NLR

programs is the int operator. This is an operator that allows the user to model initial value

nonlinear integral equations. For example consider the following set of two equations:

4
0

132

2
0

211

adxyay

adxyay

x

x








 (6.8.1)

These highly nonlinear and recursive equations can be modeled in REGRESS as follows:

 y1 = 'a1 * int(y2, 0, x) + a2'

 y2 = 'a3 * int(y1, 0, x) + a4'

This model is recursive in the sense that y1 is a function of y2 and y2 is a function of y1. Not all

general purpose NLR programs support recursive models. The user supplies values of x, y1 and

y2 for n data points and the program computes the least squares values of the ak 's.

Another desirable REGRESS feature is a simple method for testing the resulting model on data

that was not used to obtain the model. In REGRESS the user invokes this feature by specifying a

parameter called NEVL (number of evaluation points). Figure 6.8.1 includes some of the

REGRESS output for a problem based upon Equation 6.8.1 in which the number of data records

for modeling was 8 and for evaluation was 7. Each data record included values of x, y1 and y2

(i.e., a total of 16 modeling and 14 evaluation values of y). The program required 15 iterations to

converge.

Function Y1: A1 * INT(Y2,0,X) + A2

Function Y2: A3 * INT(Y1,0,X) + A4

 K A0(K) AMIN(K) AMAX(K) A(K) SIGA(K)

 1 0.50000 Not Spec Not Spec 1.00493 0.00409

 2 1.00000 Not Spec Not Spec 2.00614 0.00459

 3 0.00000 Not Spec Not Spec -0.24902 0.00079

 4 -1.00000 Not Spec Not Spec -3.99645 0.00663

 Evaluation of Model for Set 1:

 Number of points in evaluation data set: 14

 Variance Reduction (Average) 100.00

 VR: Y1 100.00

 VR: Y2 100.00

 RMS (Y - Ycalc) (all data) 0.01619

 RMS (Y-Yc) - Y1 0.02237

 RMS (Y-Yc)/Sy) - Y1 0.00755

 RMS (Y-Yc) - Y2 0.00488

 RMS (Y-Yc)/Sy) - Y2 0.00220

 Fraction Y_eval positive : 0.214

 Fraction Y_calc positive : 0.214

 Fraction Same Sign : 1.000

 Data Set Variable Min Max Average Std_dev

 Modeling X1 0.0100 6.2832 1.6970 2.3504

 Modeling Y1 -7.9282 2.0000 -1.2393 3.7499

 Modeling Y2 -4.1189 4.0000 -2.2600 3.1043

 Evaluate X1 0.1500 5.2360 1.6035 1.8876

 Evaluate Y1 -8.0000 1.3900 -2.1940 3.4524

 Evaluate Y2 -4.1169 2.9641 -2.6260 2.7180

Figure 6.8.1 Recursion, the int operator & evaluation points

