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Chapter 6   SOFTWARE 
 

6.1 Introduction 

 
One of the earliest applications of digital computers was least squares analysis of experimental 

data.  The Manhattan Project during World War II included a large emphasis on experiments to 

determine basic properties such as half lives of radioactive isotopes, radiation shielding 

parameters, biological effects of radiation and many other properties of vital interest.  The 

fundamentals of nonlinear least squares analysis was known then and was summarized in a book 

by W. E. Deming in 1943 [DE43].  An unclassified Los Alamos publication in 1960 by R. Moore 

and R. Zeigler described the software used at Los Alamos for solving nonlinear least squares 

problems [MO60].  Besides describing their general purpose software, they discussed some of the 

problems encountered in converging to a solution for some mathematical models. 

 

Most readers of this book are either users of available NLR (nonlinear regression) software or are 

interested in evaluating and/or obtaining NLR software.  Some readers, however, will be 

interested in writing their own software to solve a specific problem.  Chapter 2 includes sufficient 

details to allow a user to rapidly get a system up and running.  For all readers it should be useful 

to survey features that one would expect to see in a general purpose NLR program.  It should be 

emphasized that there is a difference between a general purpose NLR program and a program 

written to quickly solve a specific problem.  Indeed, using a language like MATLAB, some of my 

students in a graduate course that I have been teaching for a number of years (Design and 

Analysis of Experiments) have produced NLR code to solve specific homework problems. 

 

Statistical software is available through the internet from a massive variety of sources.  A Google 

search for "statistical software" turned up 9.5 million hits!  Some of the software is free and other 

software programs are available for a price that can vary over a wide range.  Some of the software 

includes nonlinear regression applications.  Refining the search by adding "nonlinear regression" 

turned up over 600,000 hits.  Many of these hits describe nonlinear regression modules that are 

part of larger statistical packages.  Further refining the search to S-plus, the number of hits was 

over 26,000. Nonlinear regression software in S-plus is described by Venables and Ripley 



[VE02].  Huet et. al. describe a program called NLS2 that runs under the R statistical software 

environment as well as S-plus [HU03].  Refining the search to SPSS, the number of hits was over 

30,000.  The SPSS Advanced Statistics Manual includes details for nonlinear regression analyses 

within SPSS [ZE98].  Refining the search to SAS, the number of hits was about 51,000.  The 

NLIN procedure in the SAS system is a general purpose nonlinear regression program and is 

described in a paper by Oliver Schabenberger [SC98].  Refining the search to MATLAB, over 

41,000 hits were noted.  MATLAB m files for performing nonlinear regression analyses are 

included in [CO99].  The MATLAB Statistical Toolbox includes a function called nlinfit for 

performing nonlinear regression [www.mathworks.com/products/statistics].  

 

In Section 6.2 features that are common to general purpose NLR programs are described and 

features that are desirable but not available in all the programs are also described.  In Section 6.3 

the NIST Statistical Reference Datasets are discussed.  These well-known datasets are used to 

evaluate NLR programs and search algorithms.  In Section 6.4 the subject of convergence is 

discussed.  For most users, performance of NLR programs is primarily based upon a single issue: 

does the program achieve convergence for his or her problems of interest?  In Section 6.5 a 

problem associated with linear regression is discussed.  Multi-dimensional modeling is discussed 

in Section 6.6 and software performance is discussed in Section 6.7.  

 

 
6.2 General Purpose Nonlinear Regression Programs 
 
There are a number of general purpose nonlinear regression programs that can easily be obtained 

and allow the user to run most problems that he or she might encounter.  Some of the programs 

are offered as freeware and some of the programs must be purchased.  Some programs are offered 

on a free trial basis but must then be purchased if the user is satisfied and wishes to use the 

program after termination of the trial period.  This section includes a survey of features that one 

encounters while reviewing nonlinear regression software.  The purpose of this chapter is to 

provide the reader with the necessary background required to make a reasoned choice when 

deciding upon which program to use for his or her specific applications.  

 

When one works within the framework of a general purpose statistical software environment 

(e.g., SAS, SPSS, S-plus, MATLAB Statistical Toolbox), a reasonable choice for nonlinear 

regression is a program that is compatible with the environment.  Data created by one module of 

the system can then be used directly by the nonlinear regression module.  Alternatively one can 

use a general purpose nonlinear regression program that runs independently (i.e., not within a 

specific statistical software environment).  One problem with this alternative is data compatibility 

but this need not be a major obstacle.  Most statistical software environments are Excel 

compatible, so if the nonlinear regression program is also Excel compatible, then data can be 

easily moved from the statistical software environment through Excel to the nonlinear regression 

program.  In addition, ASCII text files can be used by almost all general purpose programs and 

statistical environments. 

 

To qualify as a general purpose nonlinear regression program I feel that as a minimum, the 

following features should be included:  

 

1) Mathematical models should be entered as input parameters. 

2) The program should accept nonlinear models with respect to the unknown parameters 

(and not just nonlinear with respect to the independent variables). 

http://www.mathworks.com/products/statistics


3) There should be no need for the user to supply derivatives (neither analytical nor 

numerical) of the mathematical model. 

4) The program should be able to accommodate mathematical models that are multi-

dimensional in both the dependent and independent variables. 

5) The user should be able to weight the data according to any weighting scheme of his 

or her choosing. 

6) The program should include a sophisticated convergence algorithm.  The National 

Institute of Standards nonlinear regression datasets (described in Section 6.3) provide 

a rich variety of problems that can be used to test the quality of a program's ability to 

achieve convergence. 

 

In addition, there are a number of desirable features that one would like to see in a general 

nonlinear regression program: 

 

1) Allow the user to name the dependent and independent variables and the unknown 

parameters. 

2) Allow the user to define symbolic constants. 

3) Allow specification of Bayesian estimators for the unknown parameters.  

4) Include a simulation feature useful for designing experiments.  (See Chapter 5 for a 

discussion and examples related to this feature.) 

5) Allow input of Excel text files. 

6) Include a feature to generate an interpolation table that lists values of the dependent 

variable and their standard deviations for a specified set of the independent variable 

or variables.  

7) Allow program usage from within a general purpose statistical or programming 

environment. 

8) Include a feature for generation of graphical output. 

 

Treating mathematical models as input parameters is probably the most important feature of a 

general purpose NLR program.  If the user is forced to program a function for every problem 

encountered, then the NLR program is not really "general purpose".  If the user is working in an 

interactive mode and notes that a particular function does not yield results of sufficient accuracy, 

he or she should be able to enter a new function without having to exit the NLR program to 

reprogram the function. 

 

The need for symbolic constants is a feature that can be most useful for problems in which 

convergence is difficult.  This subject is discussed in Section 6.4. 

 

There are several debatable features that are really a matter of user preference.  Should the 

program use a parameter file for specifying the parameters of a particular analysis or should the 

program work through a GUI interface?  Today, most computer programs (not just nonlinear 

regression programs) are interactive and allow the user to specify what he or she wishes to do 

thru a menu driven series of questions.  For nonlinear regression, the number of parameters can 

be considerable so if the program is accessed through a GUI interface, there should be some 

method for shortcutting the process when the change from a previous analysis is minor.  This 

particular problem is avoided if parameter files are used.  All one has to do is edit the parameter 

file and make changes or perhaps copy the file under a new name and then change the new file.  

 

The need for graphic output is a very reasonable user requirement, but should it be an integral 

part of an NLR general purpose program?  As long as one can easily port the data to another 

program that supports graphics, then this should be a reasonable compromise.  For example, if the 



NLR program outputs text data, this output can then be inputted to a program like Excel to obtain 

the necessary graphical output.  

 

 

 
6.3 The NIST Statistical Reference Datasets 
 

The U.S. National Institute of Standards and Technology (NIST) initiated a project to develop a 

standard group of statistical reference datasets (StRD's).   In their words the object of the project 

was "to improve the accuracy of statistical software by providing reference datasets with certified 

computational results that enable the objective evaluation of statistical software."   One of the 

specific areas covered was datasets for nonlinear regression.  The NIST StRD project home page 

can be accessed at: 

 

http://www.itl.nist.gov/div898/strd/index.html 
 

To examine the datasets, go into Dataset Archives and then Nonlinear Regression.  A summary of 

the NIST nonlinear regression datasets is included in Table 6.3.1: 

 

Name Difficulty Parms Num 

pts 

Function 

Misrala Lower 2  14 b1*(1-exp[-b2*x]) 

Chwirut1 Lower 3 214 exp[-b1*x]/(b2+b3*x) 

Chwirut2 Lower 3  54 exp(-b1*x)/(b2+b3*x) 

Lanczos3 Lower 6  24 b1*exp(-b2*x) + 

b3*exp(-b4*x) + b5*exp(-b6*x) 

Gauss1 Lower 8 250 b1*exp( -b2*x ) +  

b3*exp( -(x-b4)**2 / b5**2 ) + 

b6*exp( -(x-b7)**2 / b8**2 ) 

Gauss2 Lower 8 250 Same as Gauss1 

DanWood Lower 2   6 b1*x**b2 

Misralb Lower 2  14 b1 * (1-(1+b2*x/2)**(-2)) 

Kirby2 Average 5 151 (b1 + b2*x + b3*x**2) /  

(1 + b4*x + b5*x**2) 

Hahn1 Average 7 236 (b1+b2*x+b3*x**2+b4*x**3)  /               

(1+b5*x+b6*x**2+b7*x**3) 

Nelson Average 3 128 b1 - b2*x1 * exp[-b3*x2] 

MGH17 Average 5  33 b1 + b2*exp[-x*b4] +  

b3*exp[-x*b5] 

Lanczos1 Average 6  24 b1*exp(-b2*x) + b3*exp(-b4*x) 

+ b5*exp(-b6*x) 

Lanczos2 Average 6   24 Same as Lanczos1 

Gauss3 Average 8 250 Same as Gauss1 

Misralc Average 2  14 b1 * (1-(1+2*b2*x)**(-.5)) 

Misrald Average 2  14 b1*b2*x*((1+b2*x)**(-1)) 

Roszman1 Average 4  25 b1 - b2*x - arctan[b3/(x-b4)]/pi 

http://www.itl.nist.gov/div898/strd/index.html
http://www.itl.nist.gov/div898/strd/index.html


Name Difficulty Parms Num 

pts 

Function 

ENSO Average 9 168 b1 + b2*cos( 2*pi*x/12 ) + 

b3*sin( 2*pi*x/12 )  +  

b5*cos( 2*pi*x/b4 ) +  

b6*sin( 2*pi*x/b4 )  +  

b8*cos( 2*pi*x/b7 ) +  

b9*sin( 2*pi*x/b7 ) 

MGH09 Higher 4  11 b1*(x**2+x*b2) / 

(x**2+x*b3+b4) 

MGH10 Higher 3  16 b1 * exp[b2/(x+b3)] 

 

Thurber 

Higher 7  37 (b1 + b2*x + b3*x**2 + 

b4*x**3) / 

(1 + b5*x + b6*x**2 + b7*x**3) 

BoxBOD Higher 2   6 b1*(1-exp[-b2*x]) 

Ratkwosky3 Higher 3   9 b1 / (1+exp[b2-b3*x]) 

Ratkowsky4 Higher 4  15 b1 / ((1+exp[b2-b3*x])**(1/b4)) 

Eckerle4 Higher 3  35 (b1/b2) *  

exp[-0.5*((x-b3)/b2)**2] 

Bennett5 Higher 3 154 b1 * (b2+x)**(-1/b3) 

Table 6.3.1 Datasets from the NIST Nonlinear Regression Library 

 

There are 27 different data sets included in the library including the actual data files (in text 

format) and results from least squares analyses of the data.  The datasets are classified by Level of 

Difficulty (lower, average and higher), number of parameters (varying from 2 to 9), and number 

of data points (varying from 6 to 250).  The datasets including the mathematical models are listed 

in Table 6.3.1.  Each data set includes two different starting points: one near the solution and one 

further away from the solution.  Also included are the least squares values and their estimated 

standard deviations.  Results also include the sum of the squares of the residuals (i.e., S) and the 

Residual Standard deviation (i.e., sqrt(S / (n-p)).  The datasets include a number of challenging 

problems that test the ability of a program to converge to a solution.  However, the choice of 

datasets is limited to mathematical models that include a single independent variable x.  Another 

limitation is that only unit weighting is used for the all problems.  Details for one of the datasets 

(BoxBOD) are shown in Figure 6.3.1. 
 

The BoxBOD problem has only two unknown parameters (i.e., b1 and b2) and only six data 

points and yet it is listed as higher in level of difficulty because of the difficulty of converging to 

a solution from the Start 1 initial values. 

One of the most well-known general purpose nonlinear regression programs is NLREG 

(www.nlreg.com).  They describe their results using the NIST datasets as follows: "The NIST 

reference dataset suite contains 27 datasets for validating nonlinear least squares regression 

analysis software. NLREG has been used to analyze all of these datasets with the following 

results: NLREG was able to successfully solve 24 of the datasets, producing results that agree 

with the validated results within 5 or 6 significant digits. Three of the datasets (Gauss1, Gauss2 

and Gauss3) did not converge, and NLREG stopped with the message: Singular convergence. 

Mutually dependent parameters?  The primary suggested starting values were used for all 

datasets except for MGH17, Lanczos2 and BoxBOD which did not converge with the primary 

suggested starting values but did converge with the secondary suggested starting values."  

http://www.nlreg.com/


The differences between the three Gauss datasets are in the data.  A plot of the Gauss1 data is 

shown in Figure 6.3.2.  All three models include two Gaussian peaks with an exponentially 

decaying background.  The peaks in the Gauss3 dataset are much closer together than the peaks in 

the other two datasets and that is why its level of difficulty is considered higher.  However, NIST 

lists all three datasets as either lower or average level of difficulty.  I ran Gauss1, Gauss2 and 

Gauss3 using REGRESS and had no problem converging from the primary suggested starting 

values.  My guess is that somehow an error was introduced in the NLREG tests for these three 

datasets because it isn't logical that NLREG would fail for these and yet pass all the tests for the 

higher level of difficulty. 

Another available NLR general purpose program is LabFit which can be located at 

http://www.angelfire.com/rnb/labfit/index.htm.  Results for all the NIST datasets are included on 

the website.  In their words they "achieved convergence for all the primary starting values for all 

the datasets and the results are statistically identical to the certified values". 

 

Results for the NLR program Stata 8.1 can be seen at http://www.stata.com/support/cert/nist/.  

They achieved convergence for all of the datasets but for one dataset of average difficulty 

(MGH17) and 4 of higher difficulty (MGH09, MGH10, Eckerle4 and Ratkowsky4) they only 

achieved convergence from the nearer starting points.  Stata is a "complete, integrated statistical 

package that provides everything needed for data analysis, data management, and graphics".  The 

NLR module is only one feature of the Stata package. 

 

http://www.angelfire.com/rnb/labfit/index.htm
http://www.stata.com/support/cert/nist/


NIST/ITL StRD 

Dataset Name:  BoxBOD            (BoxBOD.dat) 

Description:   These data are described in detail in Box, Hunter and 

Hunter (1978).  The response variable is biochemical oxygen demand 

(BOD) in mg/l, and the predictor variable is incubation time in days. 

 

Reference: Box,G.P., W.G.Hunter, and J.S.Hunter(1978). 

           Statistics for Experimenters.   

           New York, NY: Wiley, pp. 483-487. 

 

Data:      1 Response  (y = biochemical oxygen demand) 

           1 Predictor (x = incubation time) 

           6 Observations 

           Higher Level of Difficulty 

           Observed Data 

 

Model:     Exponential Class 

           2 Parameters (b1 and b2) 

 

           y = b1*(1-exp[-b2*x])  +  e 

Start 1 Start 2    Parameter     Standard Deviation 

b1=1      100   2.1380940889E+02  1.2354515176E+01 

b2=1     0.75   5.4723748542E-01  1.0455993237E-01 

 

Residual Sum of Squares:       1.1680088766E+03 

Residual Standard Deviation:   1.7088072423E+01 

Degrees of Freedom:            4 

Number of Observations:        6   

 

Data:   y             x 

      109             1 

      149             2 

      149             3 

      191             5 

      213             7 

      224            10 

Figure 6.3.1 Data and Results for NIST Dataset BoxBOD 

 

 

Figure 6.3.2 Gauss1 data from NIST Nonlinear Regression Library 



 

Results for the program Datafix (a product of Oakdale Engineering) are available at 

http://www.curvefitting.com/datasets.htm.  They achieved convergence for all datasets "without 

using analytical derivatives" but do not specify if this was from the primary or secondary starting 

points. 

 

An Excel based NLR program is included as part of the XLSTAT package.  Details can be 

obtained at http://www.xlstat.com/indexus.html.  This package runs within Excel and they 

include the Ratkowsky4 example in their demonstration.  Their solution requires programming of 

the derivatives of the modeling function and therefore cannot be considered as a general purpose 

NLR program.  However, they have programmed complete solutions including derivatives for a 

limited number of functions. 

 

An NLR program is included in the TSP econometrics package.  The results for the NIST 

nonlinear reference datasets can be seen on the TSP International website: 

http://www.tspintl.com/products/tsp/benchmarks/nlstab.txt 

They achieved convergence on all the datasets except Lanczos1.  No mention is made regarding 

the starting points for the various tests. 

 

The LIMDEP program (a product of Econometric Software) is another general purpose statistical 

econometric package.  Details regarding the LIMDEP program can be obtained at: 

http://www.limdep.com/programfeatures_accuracy.shtml 

The LIMDEP NLR module was tested using the NIST datasets as well as other benchmark 

datasets described by McCullough [MC99].  In their own words: "LIMDEP was able to solve 

nearly all the benchmark problems using only the program default settings, and all of the rest with 

only minor additional effort."  This statement makes a lot of sense.  Most general purpose NLR 

programs have default settings but for difficult problems, some minor adjustments in the 

parameters can lead to convergence.  This subject is considered in Section 6.4. 

 

 

 
6.4 Nonlinear Regression Convergence Problems  

 
In Section 6.3 the NIST dataset library of NLR problems is discussed.  The library has been used 

extensively to test NLR computer programs.  The library has also been used to test convergence 

algorithms.  The choice of an algorithm is a fundamental issue when developing NLR software 

and there are a number of options open to the software developer.  It should be emphasized that 

there is no single algorithm that is best for all problems.  What one hopes to achieve is an 

algorithm that performs well for most problems.  In addition, for problems that are difficult to 

converge, a good NLR program should offer the user features that can help achieve convergence.  

In this section some of the features that enhance convergence are discussed using examples from 

the NIST library. 

 

There are two basic classes of search algorithms that can be used for NLR problems: 

 

1) Algorithms based upon usage of function derivatives to compute a vector of changes in 

the manner described in Section 2.4. 

2) Stochastic algorithms that intelligently search thru a defined unknown parameter space. 

 

http://www.curvefitting.com/datasets.htm
http://www.xlstat.com/indexus.html
http://www.tspintl.com/products/tsp/benchmarks/nlstab.txt
http://www.tspintl.com/products/tsp/benchmarks/nlstab.txt
http://www.limdep.com/programfeatures_accuracy.shtml
http://www.limdep.com/programfeatures_accuracy.shtml


The straight forward Gauss-Newton (GN) algorithm (Equations 2.4.16 and 2.4.17) is the starting 

point for most algorithms of the first type.  This simple algorithm leads to convergence for many 

NLR problems but is not sufficient for more difficult problems like some of those encountered in 

the NIST datasets.  To improve the probability of achieving convergence, Equation 2.4.16 can be 

replaced by: 

 

 kkk A*cafaa 0    k = 1 to p        (6.4.1) 

 

where caf is called the convergence acceleration factor.  As a default caf is one, but for difficult 

problems, using a value of caf < 1 can sometimes lead to convergence.  A more sophisticated 

approach is to calculate the value of S computed using the new values of ak and compare this 

value with the value of S computed using the old values.  As long as the value of S decreases, 

continue along this line (i.e., increase caf).  However, if the reverse is true (i.e., Snew > Sold) the 

value of caf is decreased (even to a negative number).  It should be emphasized that caf is an 

input parameter and all changes of caf should be done algorithmically within the program for a 

given iteration.  For the next iteration the value of caf is restarted at the input value.  Sometimes it 

turns out that along the direction suggested by the A vector, S rises in both directions (i.e., caf > 0 

and caf < 0).  When this happens the algorithm can be modified to alter the direction.  The 

Marquardt algorithm (sometimes called the Levenberg-Marquardt algorithm) is very popular and 

is used to modify the basic Gauss Newton algorithm [LE44, MA63, GA92].  Equations 2.4.16 or 

6.4.1 are still used but the A vector is computed using a modified procedure.  Instead of 

computing the A vector using Equation 2.4.9, the following equation is used: 

 

   VDCA
1

             (6.4.2) 

 

The matrix D is just the diagonal of the C matrix (with all off diagonal terms set to zero) and is 

a scalar parameter.  By trying several different values of  a new direction can often be found 

which leads to a better reduction of S then achieved using Equation 2.4.16 or 6.4.1. 

   

Tvrdik and Krivy survey several standard algorithms using the higher difficulty problems from 

the NIST datasets [TV04].  This paper can also be accessed online at 

http://albert.osu.cz/tvrdik/down/files/comp04.pdf.  The algorithms used are those included in 

several NLR standard packages: NCSS 2001 which uses a Levenberg-Marquardt (LM) algorithm 

S-PLUS 4.5 which uses a GN algorithm, SPSS 10.0 which uses a modified LM algorithm and 

SYSTAT 8.0 which includes both a modified GN algorithm and an algorithm based upon the 

simplex method.  Their results are shown in Table 6.4.1. 

http://albert.osu.cz/tvrdik/down/files/comp04.pdf


 

 NCSS SYST GN SYST Sim S-Plus SPSS 

Start: 1            2 1           2 1           2 1           2 1           2 

Bennett5 2            1 OK      OK F           F OK    OK OK    OK 

BoxBOD F           F OK      OK F           F OK    OK F        OK 

Eckerle4 F           3 OK      OK F           F F        OK OK    OK 

MGH09 F           F F         OK OK      OK F          2 OK    OK 

MGH10 F           F OK      OK F         OK F        OK F           F 

Ratkowsky3 OK      OK OK      OK F           F F        OK OK    OK 

Ratkowsky4 F           3 OK      OK F           F F        OK OK    OK 

Thurber F           F OK      OK OK      OK F           F F           F 

Table 6.4.1  Comparison of algorithms for NIST datasets. 

 

For each dataset, the programs were started from the far (1) and near (2) points as listed in the 

NIST reference datasets.  An entry of F means that the program failed to converge and OK means 

that it did converge and S was accurate to at least 4 significant digits.  A numerical entry means 

that it converged to 1, 2 or 3 significant digits.  Clearly the SYSTAT program using the modified 

GN algorithm outperformed the other program but this does not mean that a GN algorithm is 

necessarily best.  It does, however, prove that by cleverly modifying the basic algorithm one can 

achieve better results. 

 

One of the easiest features that can be employed in an NLR program is to limit the search for 

some or all of the unknown parameters.  For example, consider the BoxBOD dataset from the 

NIST library.  Details are shown in Figure 6.3.1.  Results obtained using the REGRESS program 

with only the default parameters are shown in Figure 6.4.1.  An examination of the results 

shows that the value of B2 becomes a huge negative number.  Looking at the data in Figure 6.3.1 

and the function used to specify Y we see that Y increases with X so B2 must be a positive 

number.  Setting a value of B2MIN = 0.001 and rerunning the program, the results in Figure 

6.4.2 are obtained after 80 iterations.  The ability to specify minimum and maximum values for 

the unknown parameters is an essential feature in a general purpose NLR program. 
 

PARAMETERS USED IN REGRESS ANALYSIS: Thu Dec 02, 2004 

   INPUT PARMS FILE: boxbod.par 

   INPUT DATA  FILE: boxbod.par 

   REGRESS  VERSION: 4.10, Nov 15, 2004 

  STARTREC - First record used            :     1 

  N - Number of recs used to build model  :     6 

  NO_DATA - Code for dependent variable    -999.0 

  NCOL - Number of data columns           :     2 

  NY   - Number of dependent variables    :     1 

  YCOL1 - Column for dep var Y               :  1 

  SYTYPE1 - Sigma type for Y              :     1 

     TYPE 1:  SIGMA Y = 1 

  M - Number of independent variables     :     1 

  Column for X1                           :     2 

  SXTYPE1 - Sigma type for X1             :     0 

     TYPE 0:  SIGMA X1 = 0 

Analysis for Set 1 

  Function Y:  B1*(1-EXP[-B2*X]) 

  EPS - Convergence criterion           : 0.00100 

  CAF - Convergence acceleration factor :   1.000 

 



 ITERATION          B1          B2  S/(N.D.F.) 

         0     1.00000     1.00000    46595.60 

         1    89.08912   114.70610    12878.94 

         2   185.20000     <-10^49      >10^0 

 Singular matrix condition 

Figure 6.4.1 Results for BoxBOD using Default Settings 

 

There are some problems in which the values of the unknown parameters vary slowly but 

convergence is very difficult to achieve.  For such problems setting upper and lower bounds on 

the parameters accomplishes nothing.  The Bennett5 problem from the NIST datasets is an 

example of such a problem.  Using the far starting points for the 3 unknowns, REGRESS required 

over 536,000 iterations to achieve convergence!  Using the near starting points the results were 

not much better: over 390,000 iterations were required.  REGRESS uses a modified GN 

algorithm but if the progress for an iteration is not sufficient it then uses an LM algorithm.  A 

better approach for problems of this type is to use a stochastic algorithm.  Stochastic algorithms 

avoid the need for function derivatives.  A search space is defined by setting minimum and 

maximum values for all the unknown parameters.  A random number generator is used to set a 

starting point within the space and then a heuristic is used to find the next point.  In the same 

paper as mentioned above [TV04], Tvrdik and Krivy describe 5 different stochastic algorithms 

and then compare them using the same datasets as listed in Table 6.4.1.  Their results show large 

performance differences from problem to problem and algorithm to algorithm.  Four of the five 

managed to achieve solutions for the Bennett5 problem.  

 

Another option for problems that are difficult to converge is to use symbolic constants.  For 

example, the parameter file for the REGRESS runs for the Bennett5 problem included the 

following function specification: 

 
  unknown b1, b2, b3; 

   y ='b1 * (b2+x)^(-1/b3)' 

 

Knowing the solution in advance, and noticing that the values of the unknowns were progressing 

in the correct direction, I just let REGRESS run until convergence was achieved.  However, if the 

amount of data had been much greater than the 154 data records associated with this dataset, the 

time required to reach convergence would have been very large indeed.  An alternative to this 

approach is to use symbolic constants.  For example, one could hold b1 constant and do a two 

parameter fit using the following function specification:  

 
  constant b1; 

  unknown b2, b3; 

   y ='b1 * (b2+x)^(-1/b3)' 

 

Once least square values of b2 and b3 are located for the inputted value of b1 the value can be 

changed and a new combination can be located.  Comparing the values of S obtained for the 

different values of b1, one can home in on a region likely to contain the best value of b1.  Once 

this region has been identified, one could then return to the original function specification to 

make the final 3 parameter search.  The number of iterations using this procedure is much less 

than starting the process searching for all 3 parameters but requires a lot of user intervention and 

judgment. 

 

For very difficult problems a combination approach is sometimes used.  The process is started by 

doing a very course grid search through the entire space just computing S at all points in the grid.  



The best region to start the search is around the point for which S is a minimum.  All the 

unknowns are then bounded within this region and a detailed search is then initiated.  If 

convergence is still a problem, then the use of symbolic constants and/or a stochastic algorithm 

can be used to further reduce the size of the search space.  

 
 PARAMETERS USED IN REGRESS ANALYSIS: Thu Dec 02, 2004 

  ITERATION          B1          B2  S/(N.D.F.) 

         0     1.00000     1.00000    46595.60 

         1    89.08912   114.70610    12878.94 

         2   185.20000     0.00100    46567.68 

         3     9985.49     0.05420  7946907.22 

         4    -1977.29     0.07206   917128.67 

         5  -907.83514     0.00172    51485.53 

         6     7854.00     0.00100    28275.45 

         7    15098.02     0.00193     6215.57 

         8    14635.85     0.00203     6194.60 

         - - - - - - - - - - - - - - - - - - - 

         - - - - - - - - - - - - - - - - - - - 

        79   213.87781     0.54643   292.00568 

        80   213.82425     0.54706   292.00238 

 POINT          X1           Y        SIGY       YCALC 

     1     1.00000   109.00000     1.00000    90.10764 

     2     2.00000   149.00000     1.00000   142.24097 

     3     3.00000   149.00000     1.00000   172.40360 

     4     5.00000   191.00000     1.00000   199.95134 

     5     7.00000   213.00000     1.00000   209.17267 

     6    10.00000   224.00000     1.00000   212.91397 

 

 PARAM INIT_VALUE  MINIMUM  MAXIMUM   VALUE     SIGMA 

    B1    1.00000 Not Spec Not Spec 213.81258  12.35691 

    B2    1.00000  0.00100 Not Spec   0.54720   0.10452 

 Variance Reduction:         88.05 

 S/(N - P)         :     292.00223 

 RMS (Y - Ycalc)   :      13.95235 

        Figure 6.4.2   Results for BoxBOD using B2MIN = 0.001 

 

 

 

6.5 Linear Regression: a Lurking Pitfall 

 
A general purpose NLR (nonlinear regression) program can easily handle linear regression 

problems.  Software developed for nonlinear problems can be used with no change to solve linear 

problems.  However, there is a hidden danger in using linear models that often plagues new users 

of curve-fitting software.  When data is available and there is no physically meaningful 

mathematical model to explain the variation of a dependent variable y as a function of x, the most 

tempting approach to the problem is to use a simple polynomial: 
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 p

p xa...xaxaay          (6.5.1) 

 

If one is only looking for an adequate function to predict y for any value of x then why not just 

start with a straight line (i.e., p = 2) and increase p until the average root-mean-square (RMS) 

error is acceptable?  This approach, although theoretically very appealing, can lead to very 



difficult numerical problems that arise due to the fact that computers work to a finite number of 

significant digits of accuracy. 

 

To explain the problem, consider data in which the values of x are equally spaced from 0 to 1 and 

unit weighting is used.  The derivative of Equation 6.5.1 with respect to ak is simply xk-1 so from 

Equations 2.4.14 and 2.4.15 the terms of the C matrix and the V vector are: 
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Once we have computed the terms of the C matrix and the V vector we use Equation 2.4.9 to 

solve for the vector A: 

 

 VCA
1             (2.4.9)  

 

This vector includes all p values of the ak's.  We can estimate the value of Cjk by using the 

following approximation: 
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For example, for  p=4 the C matrix is approximately: 
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For those readers familiar with linear algebra, they will recognize this matrix as the well known 

Hilbert matrix and it has the following property: 

 

     p.ln/p.p.
eCcond

51105353
1010            (6.5.6) 

 

In other words, as the number of unknowns (i.e., p) increases, the condition of the matrix (the 

ratio of the largest to smallest eigenvalues of the matrix) increases exponentially.  Using cond(C) 

we can estimate the errors in the ak's due to errors from the terms of the V vector:  

 

  
V

V
Ccond

A

A 
            (6.5.7) 

 



This equation means that the fractional errors in the terms of the A vector are no more than 

cond(C) times the fractional errors in the V vector.  For example, let us assume that the values of 

Y are accurate to 5 decimal digits so that the fractional errors in the terms of the V vector are of 

the order of 10-5.  If cond(C) is about 100, then the fractional errors in the terms of the A vector 

are at worst of the order of 10-3.  This loss of accuracy comes about due to the process of 

inverting the C matrix.  In other words, if cond(C) is about 100 we can expect a loss of about 2 

digits of accuracy in solving Equation 2.4.6 (i.e., CA = V).  A set of linear equations like 

Equation 2.4.6 is said to be "ill-conditioned" when the value of the condition become a large 

number. 

 

Examining Equations 6.5.6 and 6.5.7, the pitfall in using Equation 6.5.1 for curve fitting can be 

seen.  As p increases, C becomes increasingly ill-conditioned.  The log10 of cond(C) is the 

maximum number of decimal digits that might be lost in solving Equation 2.4.6.  So if p = 5, 6 or 

7 then the condition is 107.5, 109 or 1010.5 and the number of digits of accuracy that might be lost 

are 7.5, 9 or 10.5!  We see that even though Equation 6.5.1 is a very tempting solution for 

obtaining a simple equation relating y to x, it is increasingly numerically problematical as p 

increases. 

 

The NIST datasets include linear as well as nonlinear problems.  The most difficult problem is the 

'Filippelli problem'.  This dataset has 82 point and the proposed model is Equation 6.5.1 with p 

=11.  The LIMDEP website includes their solution to this problem and they describe the problem 

as follows: 

 

 "LIMDEP's linear regression computations are extremely accurate. The 'Filippelli problem' in the 

NIST benchmark problems is the most difficult of the set. Most programs are not able to do the 

computation at all. The assessment of another widely used package was as follows: Filippelli test: 

XXXXX found the variables so collinear that it dropped two of them -- that is, it set two coefficients 

and standard errors to zero. The resulting estimates still fit the data well. Most other statistical 

software packages have done the same thing and most authors have interpreted this result as 

acceptable for this test.  We don't find this acceptable. First, the problem is solvable. See LIMDEP's 

solution below using only the program defaults - just the basic regression instruction. Second, 

LIMDEP would not, on its own, drop variables from a regression and leave behind some arbitrarily 

chosen set that provides a 'good fit.' If the regression can't be computed within the (very high) 

tolerance of the program, we just tell you so. For this problem, LIMDEP does issue a warning, 

however. What you do next is up to you, not the program."  

It should be emphasized that the Filippelli problem is a problem that was proposed to test 

software and not a real problem in which Mr. Filippelli was actually trying to get usable numbers.  

If one proceeds using Equation 6.5.1 directly, consider the loss of accuracy using a 10th order 

polynomial (i.e., p = 11) to fit the data.  The number of digits of accuracy lost is at a maximum 

16.5!  Even if the values of Y are true values with no uncertainty, just inputting them into double 

precision numbers in the computer limits their accuracy to about 15 digits.  So a loss of 16.5 

digits makes the results completely meaningless.  The C matrix is so ill-conditioned that it is no 

wonder that most packages fail when trying to solve the Filippelli problem.  I tried running this 

problem using REGRESS and could not progress beyond p = 9. 

So how did LIMDEP succeed while others have failed?  I don’t know the algorithm used by 

LIMDEP to solve problems based upon Equation 6.5.1, but if I was interested in creating 

software to solve such problems I would use orthogonal polynomials [RA78, WO71].  The idea 

originally proposed by G. Forsythe [FO57] is to replace Equation 6.5.1 with the following: 
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The uk(x) terms are a set of p polynomials all orthogonal to one another.  Orthogonality for a 

particular set of data and a particular weighting scheme implies the following: 
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Equation 2.4.5 is applicable to all linear models and is therefore applicable to Equation 6.5.8.  

Substituting u for g in Equation 2.4.5 we get p+1 equations of the following form (where the 

index k is from 0 to p): 

 

  kiikpipkiki uYwuuwa...uuwauuwa 1100     (6.5.10) 

 

Applying Equation 6.5.9 to 6.5.10 we end up with p+1 equations for ak that can be solved 

directly: 
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If a set of polynomials can be constructed with this property (i.e., Equation 6.5.9), then we can 

compute the terms of the A vector without inverting the C matrix.  Or looking at it another way, 

the diagonal terms of the C-1 matrix are the inverses of the diagonal terms of the C matrix and all 

the off-diagonal terms are zero.  Forsythe suggests the following scheme for computing 

polynomials satisfying Equation 6.5.9: 



 

 1)(0 xu         (6.5.13a) 

 )()()( 011 xuxxu        (6.5.13b) 

 )()()()( 01122 xuxuxxu        (6.5.13c) 

  . 

 )()()()( 211 xuxuxxu ppppp        (6.5.13d) 

 

The  'sand 's are computed as follows: 
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The order of the computations is to first compute 1and the values of u1, then1,2and the 

values of u2, then2, etc. until all the u's are known.  Using Equation 6.5.12 the ak's can be 

computed and thus all terms required by Equation 6.5.8 are known.  As an example consider the 

data in Table 6.5.1. 

 

Point Y x 

1   7.05 0 

2  16.94 1 

3  31.16 2 

4  48.88 3 

5  71.31 4 

6  96.81 5 

7 127.21 6 

Table 6.5.1 Data for Orthogonal Polynomial Example 

 

Assuming unit weighting (i.e., wi = 1), since u0 = 1, from Equation 6.5.14 we compute 1as 

follows: 
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and therefore from Equation 6.5.13b u1 = x – 3.  We next compute 1 and 2 using Equations 

6.5.15 and 6.5.14: 
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and therefore from Equation 6.5.13c u2 =(x-3)(x – 3) – 4 = x2 - 6x + 5.  In a similar manner we 

can compute 2 =3 and 3 = 3 and thus u3 = (x-3)u2 – 3(x-3) = x3-9x2+20x-6.  To use the uk's to 

fit the data we next must compute a0, a1, a2 and a3 using Equation 6.5.12.  The details of the 

calculation are included in Table 6.5.2. 

 

The results in Table 6.5.2 include four different fits to the data: 
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The terms S / (n-p-1) are the sums of the squares of the residuals divided by the number of 

degrees of freedom.  Using the goodness-of-fit criterion explained in Section 3.3 we note that the 

parabolic equation yields the best results because S /(n-p-1) is minimized for p =2 (i.e., 3 terms).  

We can convert this equation to the simple form of Equation 6.5.1: 
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i Yi xi u0 u1 u2 u3 

1   7.05 0 1 -3  5 -6 

2  16.94 1 1 -2  0  6 

3  31.16 2 1 -1 -3  6 

4  48.88 3 1  0 -4  0 

5  71.31 4 1  1 -3 -6 

6  96.81 5 1  2  0 -6 

7 127.21 6 1  3  5  6 

   kiuY  393.36 560.37 168.37 0.84 

   2
ku  7 28 84 216 

  ak 57.05 20.01 2.004 0.0038

9 

  S 11552.5 337.7 0.198 0.194 

  S/(n-p-1) 1925.4 67.54 0.049 0.065 

Table 6.5.2 Fitting Data using Orthogonal Polynomials 

 

 

Regardless of the value of p the resulting equation derived using orthogonal polynomials can be 

converted to the simple very appealing polynomial form (i.e., Equation 6.5.1).  For difficult linear 

problems such as the Filippelli problem this technique avoids the numerical pitfalls arising from 

the direct use of 6.5.1. 

 
 

 
6.6 Multi-Dimensional Models 

 
An important feature of general purpose NLR (nonlinear regression) programs is the ability to 

handle multi-dimensional problems.  Throughout the book the discussion has primarily been 

about the relationship between a dependent scalar variable y and an independent scalar variable x.  

However, there are many problems throughout many fields of science and engineering where 

either x or y or both are vector variables.  To test NLR programs it is useful to have a few 

examples of problems of these types.  Unfortunately the nonlinear regression NIST datasets are 

limited to problems in which x and y are both scalars. 

 

The theory and use of the GraphPad Prism program is included in a book written by H. 

Motulsky and A. Christopoulos [MO03].  The book can be downloaded from the GraphPad 

Software website (www.graphpad.com) and includes a very nice example of a problem in which 

the dependent variable y is a vector.  Although GraphPad Prism is a general purpose NLR 

program, the book emphasizes analysis of biological and pharmaceutical experiments.  Using 

GraphPad terminology, global models are models in which y is a vector and some of the 

unknowns are shared between the separate models for the components of y.  A GraphPad example 

relevant to the pharmaceutical industry is the use of global models to analyze the dose-response 

curves of two groups (a treated group and a control group).  The purpose of the experiment is to 

measure what they call ec50 (the dose concentration that gives a response half-way between the 

minimum and maximum responses.  For this experiment the x variable is the log of the dose, the 

first component of the y vector is the response of the control group and the second component is 

the response of the treated group.  The problem is well documented in their book and data is 

included so that the problem can be used as a test dataset for any NLR program. 

http://www.graphpad.com/


 

The experiment was analyzed using REGRESS and the results are very close to the results 

obtained with Graphpad Prism.  The equations were specified as follows: 

 
dependent ycont, ytreat; 

independent x; 

unknown  bottom, top, hillslope, logec50c, 

         logec50t; 

ycont  = 'bottom+(top-bottom)/ 

         (1+10^((logec50c-x)*hillslope))' 

ytreat = 'bottom+(top-bottom)/ 

         (1+10^((logec50t-x)*hillslope))' 

 

The two components of the y vector are ycont and ytreat.  The unknown parameters shared by 

both equations are bottom, top and hillslope.  The two remaining unknowns are the 

logs of ec50 for the control and treatment groups (i.e., logec50c and logec50t).  The data is 

included in Table 6.6.1.  The results are seen in Figure 6.6.1.  REGRESS required 9 iterations to 

converge to the solution.  The alternative to the global approach for this problem is to treat each 

curve separately.  The reason for treating this problem using a global model is explained in the 

Graphpad document: the resulting accuracies for the values of ec50 are reduced considerably 

using global modeling.  The number of degrees of freedom for this problem (i.e., n-p) is 10 – 5 = 

5. 

 

Point x (log dose) Ycont Ytreat 

1 -7.0 165 124 

2 -6.0 284  87 

3 -5.0 442 195 

4 -4.0 530 288 

5 -3.0 573 536 

Table 6.6.1 Data for dose-response curve analysis from Graphpad. 

 

 



REC Y-INDEX    X       YCONT     SIGYCONT  CALC_VALUE 

  1     1   -7.00000  165.000     1.00000   152.28039 

  2     1   -6.00000  284.000     1.00000   271.95980 

  3     1   -5.00000  442.000     1.00000   455.54116 

  4     1   -4.00000  530.000     1.00000   549.35957 

  5     1   -3.00000  573.000     1.00000   573.06096 

 

REC Y-INDEX    X       YTREAT   SIGYTREAT  CALC_VALUE 

  1     2   -7.00000  124.000     1.00000   112.35928 

  2     2   -6.00000   87.000     1.00000   123.13971 

  3     2   -5.00000  195.000     1.00000   172.89774 

  4     2   -4.00000  288.000     1.00000   321.78672 

  5     2   -3.00000  536.000     1.00000   491.61468 

 

PARAMETER INIT_VALUE  MINIMUM  MAXIMUM   VALUE    SIGMA 

   BOTTOM    0.00000 Not Spec Not Spec  109.781  27.807 

      TOP    1000.00 Not Spec Not Spec  578.939  34.182 

HILLSLOPE    1.00000 Not Spec Not Spec  0.72458  0.1845 

 LOGEC50C   -7.00000 Not Spec Not Spec -5.61755  0.1963 

 LOGEC50T   -2.00000 Not Spec Not Spec -3.88429  0.1909 

 

 Variance Reduction:         97.67 (Average) 

    VR:        YCONT         99.26 

    VR:       YTREAT         96.08 

 S/(N - P)         :       1181.32 

 RMS (Y - Ycalc)   :      24.30351 (all data) 

      RMS(Y1-Ycalc):      13.15230 

      RMS(Y2-Ycalc):      31.75435 

Figure 6.6.1  Results from REGRESS analysis of data in Table 6.6.1. 

 

 

A second example in which y is a vector is included in Section 6.8.  A problem that demonstrates 

modeling with two independent variables was included in my first book [WO67].  This problem 

was related to a measurement of parameters related to the neutronics of heavy water nuclear 

reactors.  The model was based upon the following equation: 
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The unknowns a1 and a2 must be positive but there is no guarantee that the method of least 

squares will satisfy this requirement.  However, we can force positive values by simply using b2 

in place of a.  The modified equation is thus:  
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The two unknowns are now b1 and b2 and regardless of the resulting signs of b1 and b2, the 

squared values are always positive.  It should be noted that there are four possible solutions: both 

b1 and b2 can be positive or negative.  Depending upon the initial guesses for b1 and b2, if 

convergence is achieved, the solution will be close to one of the four possibilities.  The data for 

this problem is included in Table 6.6.2 and the results of the REGRESS analysis are seen in 

Figure 6.6.2.  Note that for this problem since the 's vary from point to point Equation 2.3.7 



must be used to properly weight the data.  The initial guesses were b1 = 1 and b2 = 10 and 

convergence was achieved with 3 iterations. 

 
PARAM INIT_VALUE MINIMUM  MAXIMUM    VALUE      SIGMA 

   B1  1.00000  Not Spec Not Spec  1.61876     0.22320 

   B2 10.00000  Not Spec Not Spec  5.29172     0.34342 

 

   Variance Reduction:         99.32 

   S/(N - P)         :       6.98221 

   RMS (Y - Ycalc)   :       0.01946 

   RMS ((Y-Ycalc)/Sy):       2.62056 

Figure 6.6.2 Results from REGRESS analysis of data in Table 6.6.2. 

   

 

Point Y y x1 x1 / x1 x2 x2 / x2 

 1 0.7500 0.01000 0.0137 0.0056 0.0258 0.0057 

 2 0.5667 0.00833 0.0137 0.0056 0.0459 0.0065 

 3 0.4000 0.00620 0.0137 0.0056 0.0741 0.0070 

 4 0.8750 0.01243 0.0240 0.0086 0.0320 0.0068 

 5 0.7000 0.01022 0.0240 0.0086 0.0453 0.0057 

 6 0.5750 0.00863 0.0240 0.0086 0.0640 0.0054 

 7 0.3800 0.00586 0.0240 0.0086 0.0880 0.0055 

 8 0.5750 0.00863 0.0260 0.0093 0.0666 0.0122 

 9 0.2967 0.00777 0.0260 0.0093 0.1343 0.0134 

10 0.1550 0.00290 0.0260 0.0093 0.2291 0.0140 

11 0.0900 0.00189 0.0260 0.0093 0.3509 0.0143 

Table 6.6.2 Modeling Data for Analysis of Equation 6.6.2. 

 

Note that the value of b1 is measured to 100 * 0.223 / 1.619 = 13.8% accuracy and b2 is measured 

to 6.5% accuracy, but what we are really interested in are the values of a1 and a2 and their 

associated 's.  In general if we have v as a function of u we can relate v to u as follows: 
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For v = u2 from Equation 6.6.3 we get: 
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Dividing the equation by v2 = u4 we end up with the following simple relationship: 
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In other words the relative uncertainty in v is twice as large as that for u.  Using Equation 6.6.5 

we see that the relative uncertainties of the a 's are twice those of the b 's.  Thus for the problem in 

Figure 6.6.2, a1 = 1.6192 = 2.621 and a1 = 2.621*2*0.138 = 0.723.  Similarly, a2 = 27.99 and a2 

= 3.64.  It is interesting to note that REGRESS can solve this problem directly for the a 's by 

replacing Equation 6.6.1 by the following alternative: 
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The abs (absolute) operator is a valid REGRESS operator that can be used in any function 

specification.    

 

 

 
6.7 Software Performance 
 
There are many ways to measure the performance of NLR (nonlinear regression) programs but 

for most problems the only relevant measure is the ability to converge to a solution for difficult 

problems.  The NIST datasets are very useful for testing the ability of NLR programs to converge 

and this subject was considered in Sections 6.3 and 6.4.  However, there are some problems 

where software performance metrics other than convergence are important.  In particular, 

problems in which the amount of data is large, the time required to converge to a solution may 

become important.  Another area where time is important is for calculations embedded within real 

time systems (e.g., anti-missile missile systems).  When decisions must be made within a fraction 

of a second, if an NLR calculation is part of the decision making process, it is important to make 

the calculation as fast as possible.  For real time applications general purpose NLR software 

would never be used.  The calculation would be programmed to optimize speed for the particular 

system and mathematical model under consideration. 

 

Since time is dependent upon hardware, one would prefer measures that are hardware 

independent.  In this section some useful measures of performance (other than the ability to 

converge) are discussed.  The total time that a program requires to achieve convergence for a 

particular program and a particular computer is approximately the following: 

 

   Converge_Time = Num_Iterations * Avg_Time_per_Iter       (6.7.1) 

 

The number of iterations required to achieve convergence is of course problem dependent but it 

can be used as a measure of performance when used for comparisons with common data sets such 

as the NIST datasets.  The average time per iteration is of course computer dependent, but the 

effect of the computer is only a multiplicative speed factor: 

 

  Avg_Time_per_Iter = Speed_Factor * Avg_Calcs_per_Iter           (6.7.2) 

 

For traditional algorithms such as Gauss-Newton (GN) or Levenberg-Marquardt (LM) or some 

sort of combination, the average number of calculations per iteration can be broken down into 2 

major terms: 

 

  Avg_Calcs_per_Iteration = Avg_CA_Calcs + Avg_S_Calcs       (6.7.3) 

 

The first term is a measure of the effort to compute the C matrix and then the A vector times the 

average number of times this operation is performed per iteration.  The second term is a measure 

of the effort to compute the weighted sum-of-squares S times the average number of times this 

operation is performed per iteration.  Both terms are proportional to n, the number of data points. 

The first term also has a component that is proportional to p3 (the complexity of solving p 

simultaneous equations). 



 

These equations are meaningless for people evaluating existing software as the actual numbers 

for a given problem are usually unavailable to the normal user.  However, for those interested in 

developing software for performing NLR analyses for problems with important speed 

requirements, these equations give some indication where one should concentrate the effort at 

achieving speed. 

 

For stochastic algorithms, these equations are not applicable. The concept of iterations is not 

really relevant.  The entire calculation becomes essentially a series of calculations of S.  Whether 

or not this results in a faster overall computation is not obvious and clearly the speed of such 

algorithms is problem dependent. 

 

 

 
6.8 The REGRESS Program 
 
Throughout the book results for a number of examples have been obtained using the REGRESS 

program.  The reason why I have chosen REGRESS is quite simple: I wrote it.  The program can 

be downloaded from: www.technion.ac.il/wolberg. The history of the development of this 

program goes back to my early career when I was in charge of designing a sub-critical heavy 

water nuclear reactor facility.  One of the experiments that we planned to run on the facility 

involved a nonlinear regression based upon Equation 6.6.2.  In the 1960's commercial software 

was rare so we had no choice other than writing our own programs.  It became quite apparent that 

I could generalize the software to do functions other than Equation 6.6.2.  All that had to be done 

was to supply a function to compute f(x) and another function to compute the required 

derivatives.  We would then link these functions to the software and could thus reuse the basic 

program with any desired function.  At the time we called the program ANALYZER. 

 

In the early 1970's I discovered a language called FORMAC that could be used for symbolic 

manipulation of equations.  FORMAC was compatible with FORTRAN and I used FORTRAN 

and FORMAC to write a program similar to ANALYZER and I called the new program 

REGRESS.  The REGRESS program accepted equations as input quantities. Using FORMAC, 

the program automatically generated equations for the derivatives and created FORTRAN 

subroutines that could then be used to perform the nonlinear regression (NLR).  All these steps, 

including compilation and link-editing of the subroutines, were performed automatically without 

any user intervention.  The REGRESS program became a commercial product on the NCSS time-

sharing network and I had the opportunity to work with a number of NCSS clients and learned 

about many different applications of NLR. 

 

In the mid 1970's I realized that with languages that support recursive program, I could avoid the 

need to externally compile subroutines.  Recursion is the ability to call a subroutine from within 

itself.  Using recursion, it became a doable task to write a routine to symbolically differentiate 

functions.  Using PL/1 I rewrote REGRESS and added many new features that I realized were 

desirable from conversations with a number of users of REGRESS.  I've returned to the 

REGRESS program on many occasions since the original version.  In the 1980's I started teaching 

a graduate course called Design and Analysis of Experiments and I supplied REGRESS to the 

students.  Many of the students were doing experimental work as part of their graduate research 

and the feedback from their experiences with REGRESS stimulated a number of interesting 

developments. In the early 1990's I rewrote REGRESS in the C language.  Through the many 

version changes REGRESS has evolved over the years and is still evolving. 

www.technion.ac.il/wolberg


 

The REGRESS program lacks some features that are included in other general NLR programs.  

Some students who have recently used REGRESS have suggested that the program should have a 

GUI (Graphic User Interface) front end.  Such a GUI would give REGRESS the look and feel of 

a modern program.  Personally I have my doubts that this will make the program appreciably 

more user-friendly and have so far resisted creating such an interface.  A more serious problem 

with REGRESS was the need to create data files in a format that the program could understand.  

Many users of the program gather data that ends up in an Excel Spread Sheet.  The problem for 

such users was how to get the data into REGRESS.  It turned out that the solution was quite 

simple: Excel allows users to create text files.  A feature was added to accept Excel text files.  

Another important issue was the creation of graphic output.  One of the features of REGRESS is 

that the entire interactive session is saved as a text file.  The current method for obtaining 

graphics output is to extract the output data from the text file and then input it into a program 

such as Excel that supports graphics.  Since this turns out to be a relatively painless process, the 

need for REGRESS to generate graphic output is not a pressing issue. 

 

The REGRESS program includes some features that are generally not included in other NLR 

programs.  The most important feature in REGRESS that distinguishes it from other general 

purpose NLR programs is the Prediction Analysis (experimental design) feature described in 

Chapter 5.  Another important feature that I have not seen in other general purpose NLR 

programs is the int operator.  This is an operator that allows the user to model initial value 

nonlinear integral equations.  For example consider the following set of two equations: 
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These highly nonlinear and recursive equations can be modeled in REGRESS as follows: 

 

 y1 = 'a1 * int(y2, 0, x) + a2' 

 y2 = 'a3 * int(y1, 0, x) + a4' 

 

This model is recursive in the sense that y1 is a function of y2 and y2 is a function of y1.  Not all 

general purpose NLR programs support recursive models.  The user supplies values of x, y1 and 

y2 for n data points and the program computes the least squares values of the ak 's. 

 

Another desirable REGRESS feature is a simple method for testing the resulting model on data 

that was not used to obtain the model.  In REGRESS the user invokes this feature by specifying a 

parameter called NEVL (number of evaluation points).  Figure 6.8.1 includes some of the 

REGRESS output for a problem based upon Equation 6.8.1 in which the number of data records 

for modeling was 8 and for evaluation was 7.  Each data record included values of x, y1 and y2 

(i.e., a total of 16 modeling and 14 evaluation values of y).   The program required 15 iterations to 

converge. 

 



Function Y1:   A1 * INT(Y2,0,X) + A2 

Function Y2:   A3 * INT(Y1,0,X) + A4 

 

 K    A0(K)   AMIN(K)   AMAX(K)      A(K)   SIGA(K) 

 1  0.50000  Not Spec  Not Spec   1.00493   0.00409 

 2  1.00000  Not Spec  Not Spec   2.00614   0.00459 

 3  0.00000  Not Spec  Not Spec  -0.24902   0.00079 

 4 -1.00000  Not Spec  Not Spec  -3.99645   0.00663 

 

 Evaluation of Model for Set 1: 

   Number of points in evaluation data set:     14 

   Variance Reduction (Average)             100.00 

    VR:           Y1                  100.00 

    VR:           Y2                  100.00 

   RMS (Y - Ycalc)     (all data)          0.01619 

    RMS (Y-Yc) - Y1                  0.02237 

    RMS (Y-Yc)/Sy) - Y1              0.00755 

    RMS (Y-Yc) - Y2                  0.00488 

    RMS (Y-Yc)/Sy) - Y2              0.00220 

   Fraction Y_eval positive               :  0.214 

   Fraction Y_calc positive               :  0.214 

   Fraction Same Sign                     :  1.000 

 

   Data Set  Variable    Min     Max  Average Std_dev 

   Modeling       X1  0.0100  6.2832   1.6970  2.3504 

   Modeling       Y1 -7.9282  2.0000  -1.2393  3.7499 

   Modeling       Y2 -4.1189  4.0000  -2.2600  3.1043 

 

   Evaluate       X1  0.1500  5.2360   1.6035  1.8876 

   Evaluate       Y1 -8.0000  1.3900  -2.1940  3.4524 

   Evaluate       Y2 -4.1169  2.9641  -2.6260  2.7180 

Figure 6.8.1  Recursion, the int operator & evaluation points 

 

 

 

 

 

 

 

 

 


