
The following is from Chapter 3 of the book Expert Trading Systems: Modeling
Financial Markets with Kernel Regression, Wiley, 2000.

3.1 The Basic Concept
3.2 Higher Order Algorithms
3.3 The Bandwidth Concept
3.4 Error Estimates
3.5 Applying Kernel Regression to Time Series Data
3.6 Searching for a Model
3.7 Timing Considerations

Chapter 3: Kernel Regression

3.1 The Basic Concept

Kernel regression is one class of data modeling methods that fall within the broader category of
smoothing methods. The general purpose of smoothing is to find a line or surface which exhibits
the general behavior of a dependent variable (lets call it Y) as a function of one or more
independent variables. No attempt is made to fit Y exactly at every point. If there is only one
independent variable, then the resulting smoothing is a line. If there is more than one
independent variable, the smoothing is a surface. Smoothing methods that are based upon a
mathematical equation to represent the line or surface are called parametric methods. On the
other hand, data driven methods that only smooth the data without trying to find a single
mathematical equation are called nonparametric methods. Kernel regression is a nonparametric
smoothing method for data modeling.

The distinguishing feature of kernel regression methods is the use of a kernel to determine a
weight given to each data point when computing the smoothed value at any point on the surface.
There are many ways to choose a kernel. Wolfgang Hardle reviews the relevant literature in his
book on this subject [Ha90]. Another overview of the subject by A. Ullah and H. D. Vinod is
included in Chapter 4, Handbook of Statistics 11 [Ul93].

When using data to create models, it is useful to separate the data into several categories:

1) Learning data
2) Testing data
3) Evaluation data (i.e., Reserved data for final evaluation)

If the amount of available data is small, then there are strategies for using all the data records to
create a model. For such cases, the number of learning points is equal to the total number of
data points and the number of testing and evaluation points are zero. When modeling financial
markets this is rarely the case. There is almost always enough data for both learning and test
data sets and usually enough to leave some for final evaluation. The usual strategy is to divide
the data with nlrn, ntst and nevl points assigned to the three data sets. For various subspaces of
the candidate predictor space, the nlrn learning points are used to make predictions for the ntst
testing points and then some measure of performance is computed. One iterates through spaces
following a searching strategy. Only if the final measured performance meets the modeling
objectives, does one then use the remaining nevl points for final out-of-sample testing.

To illustrate the procedure for a single one dimensional space, consider Table 3.1.1. In this table
values are included for the dependent variable Y and a single independent variable X.

Point Data Set X Y
1 Learning 1 12.0
2 Learning 3 18.0
3 Learning 5 20.0
4 Learning 7 17.0
5 Test 2 14.0
6 Test 4 18.5
7 Test 6 19.0

Table 3.1.1 7 Data Points: 4 in the Learning Set and 3 in the Test Set

In the table we see that nlrn is 4 and ntst is 3. The 4 learning points are to be used to smooth the
data in such a way as to estimate the Y values for the 3 test points. Since Y values are already
included for the 3 test points we will be able to compare the estimated values with the actual
values.

There are many methods for performing this task but the following discussion is limited to a
single variation of kernel regression smoothing. The first decision that must be made is the
choice of a kernel. Hardle discusses many alternatives but for this example a simple exponential
kernel is used:
 (3.1.1) e Dkkxxw ijji

2
)(,, −=

In this equation the kernel w(xi , xj , k) is the weight applied to the ith learning point when

estimating the value of Y for the jth test point. The parameter k is called the smoothing

parameter and Dij2 is the squared distance between the learning and test points. If k is assigned a
value of 0 then all points are equally weighted. As k increases, the nearer points are assigned
greater weights relative to points further away from the jth test point. As k approaches infinity,
the relative weight of the nearest point becomes infinitely greater relative to all other points.

The simplest kernel regression paradigm is what I will call the Order 0 algorithm:

∑

∑
=

=

=
nlrn

i
ji

nlrn

i
iji

j
kxxw

Ykxxw
y

1

1

),,(

),,(
 (3.1.2)

In the statistical literature this equation is often referred to as the Nadaraya-Watson estimator
[Ha90, Ul93]. In this equation yj is the value of Y computed for the jth test point. The values Yi
are the actual values of Y for the learning points. This simple algorithm computes yj as a
weighted average of the Y values of the learning points. As an example, consider only the test
point at x=2 (i.e., point 5) in Table 3.1.1. In Table 3.1.2 the kernels required in the calculation
are included for k=1 and k=0.1:

Point X Y Di52 w for k=1 w for k=0.1

1 1 12 1 0.3679 0.9048
2 3 18 1 0.3679 0.9048
3 5 20 9 0.0001 0.4066
4 7 17 25 1.4e-11 0.0821

 Table 3.1.2 Computed values of w(xi , x5 , k) for k=1 and k=0.1

From this table and from Equation 3.1.2 we can compute two values of y5. For k=1 we obtain a
value of 15.008 which is very close to the average value of points 1 and 2. The reason why the
calculation is dominated by these two points is that the weights for these points are much greater
than the weights for points 3 and 4. For k=0.1, point 3 and 4 have a significant influence upon
the calculation and the resulting value is 15.956.

Results for all 3 test points and for both values of k are included in Table 3.1.3:

POINT X Y y (k=1) (Y- y)2 y (k=0.1) (Y- y)2

5 2 14.0 15.008 1.0017 15.956 3.8256
6 4 18.5 18.998 0.2485 17.605 0.8012
7 6 19.0 18.500 0.2500 18.179 0.6734

 Sum Not Used 51.5 Not Used 1.5002 Not Used 5.3002

 Table 3.1.3 Values of y and (Y-y)2 for the test points

The values of y can be used to compare the two alternatives: k=1 and k=0.1. If we choose VR
(i.e., Variance Reduction) as the modeling criterion, then Equation 1.4.1 is used. In this table we
use the notation y instead of Ycalc as used in Equation 1.4.1. The sums of (Y(i) – Ycalc(i))2 are
1.5002 and 5.3002 for k=1 and k=0.1 respectively. The value of Yavg is 51.5 / 3 = 17.167 and
the sum of (Y(i) – Yavg)2 is therefore 15.167. The values of VR are 100*(1 – 1.5002/15.167) =

90.1 for k=1 and 65.1 for k=0.1. With so few learning and test points there is really no
significance to these results. They do, however, illustrate the basic concept.

It should be emphasized that the values of y (or Ycalc) can be computed at any point and not just
at the test points. The smoothed curves generated using k=1 and k=0.1 are shown in Figure
3.1.1. For this example, we see that the curve generated by kernels using k=1 is much closer to
the test points then the curve generated using k=0.1. In fact, the smoothed k=1 curve gives the
appearance that it actually passes through the learning points. This is not the case. For example,
the value at x=1 is 12.11 whereas the actual value of the learning point at x=1 is 12.00. The
resolution of the figure is just not enough to clearly show this small difference. The differences
for the k = 0.1 curve are, however, quite obvious.

10
12
14
16
18
20
22

0 2 4 6 8

X

Y

Learning
Test
K=1
K=0.1

Figure 3.1.1 Smoothed Curves using k=1 and k=0.1

There are many problems associated with the use of Equations 3.1.1 and 3.1.2 and these
problems will be considered in the following sections.

3.2 Higher Order Algorithms

In Section 3.1 a simple example based upon Equation 3.1.2 was discussed. This equation will be
referred to as the Order 0 Algorithm. It uses a polynomial of Order 0 as the fitting function. (A
polynominal of Order 0 is just a constant.) Expanding this notation, the Order 1 Algorithm thus
uses a polynomial of Order 1. Rather than a weighted average, this algorithm is based upon a
hyperplane. For a single dimension, the hyperplane is a straight line. In p dimensions it is
simply:

 (3.2.1) xaxaxaay pp 123121 +++++=

Thus for the Order 1 Algorithm, p+1 coefficients are required to define the hyperplane. Clearly
we can define even higher order algorithms. For example, the Order 2 Algorithm is based upon
a polynomial of Order 2. For a single dimension it is a parabola:

 (3.2.2) xaxaay 2

13121 ++=

For two dimensions it includes the interaction term as well as the second order terms:

 (3.2.3) xaxxaxaxaxaay 2

26215
2
1423121 +++++=

Going to three dimensions, there is the constant term, 3 first order terms, 3 second order terms
and 3 interactions terms. There are therefore 10 coefficient (i.e., a1 a2, …, a10). We see that as
the dimensionality of the space increases, the number of coefficients required to specify the
model increases rapidly. The Order 2 Algorithm equation in p dimensions is:

 (3.2.4) xxbxaay kj
p

j

p

jk
jki

p

j
j ∑ ∑+∑+=

= ==
+

11
11

In general, the number of coefficients required in p dimensional space for the Order 2 Algorithm
is 1 + p + p*(p+1)/2. We could continue to even higher order algorithms, but for applications in
which there is a substantial noise component in the signal (like in financial market modeling),
there is no sense in going to higher order algorithms.

Once an algorithm has been selected, the coefficients are determined for every test point using
the learning data points. Typically the method of linear least squares with weighting is used to
determine the N coefficients. We can recast Equations 3.2.1 and 3.2.4 as follows:

 (3.2.5))(
1

XgAy j

N

j
j∑=

=

Comparing Equations 3.2.1 and 3.2.5, we see that for the Order 1 Algorithm, Aj is just aj.
Comparing Equations 3.2.4 and 3.2.5, the connection is less obvious for Order 2. For example,
for 2 dimensions (i.e., p=2), b11 is renumbered as A4, b12 is renumbered as A5, and b22 is
renumbered as A6. In Equation 3.2.5, gj(X) is a function of the vector X. For example, for
Equation 3.2.1 with p=3 we see that g1=1, g2=x1, g3=x2 and g4=x3. For Equation 3.2.4 with
p=3 the first four gj’s are the same as for Equation 3.2.1. The following gj’s are g5=x12, g6=x1x2,

g7=x1x3, g8=x22, g9=x2x3 and g10=x32. Using Equation 3.2.5 the least square formulation is the
same for both Order 1 and Order 2 Algorithms:

 (3.2.6) VCA =

A derivation of this equation is included in Appendix A. In this equation C is an N by N matrix
and A and V are vectors of length N. The C matrix is symmetrical and the term Cjk is defined as
follows:

 (3.2.7))()(
1

XgXgwC iki
Nlrn

i
jijk ∑=

=

The term wi is the weight computed for the ith learning point using, for example, Equation 3.1.1.

The term Xi is the X vector for the ith learning point. (The reader should note the difference
between uppercase X and lowercase x. The lowercase x refers to an element of the X vector.) V
vector terms are defined as follows:

 (3.2.8) YXgwV iij

Nlrn

i
ij)(

1
∑=
=

In this equation Yi is the value of Y for the ith learning point. Once again, the difference between
uppercase and lowercase should be noted. Uppercase Y is used for actual values of Y and
lowercase y is used for calculated values of Y.

To illustrate the process, we can repeat the example from Section 3.1 but using the Order 1
Algorithm. Using the data in Table 3.1.1 and the weights as shown in Table 3.1.2 for k=1, the C
matrix and V vector must first be computed and then the A vector is determined by solving the N
linear equations represented by Equation 3.2.6. This example is for a one dimensional space so
N is 2. Using Equation 3.2.5, the equation for y is:
 xAAy 21 += (3.2.9)

From this equation we see that g1 = 1 and g2 = x. There is no need to use a subscript for x as we
are considering the one dimensional case. In the following equations xi refers to the value of x
for the ith learning point. The equations for the terms of C and V are therefore as follows:

 (3.2.10) 7359.0
4

1
11 =∑=

=i
iwC

 (3.2.11) 4721.1
4

1
12 =∑=

=i
i ixwC

 (3.2.12) 6819.3
4

1

2
22 =∑=

=i
i i
xwC

 (3.2.13) 0389.11
4

1
1 =∑=

=
YwV i

i
i

 (3.2.14) 2924.24
4

1
2 =∑=

=
YxwV ii

i
i

The two equations to be solved are:

 (3.2.15) VACAC
VACAC

2222121

1212111

=+
=+

Since the C matrix is symmetric, C21 = C12. Solving 3.2.15, the resulting values of A1 and A2 are
9.0034 and 2.9980. Using Equation 3.2.9 with X=2 we get a value of y equal to 14.999 (i.e.,
9.0034 + 2*2.9980). The results for all 3 test points are summarized in table 3.2.1.

Point X Y A1 A2 Ycalc
5 2 14.0 9.0034 2.9980 14.999
6 4 18.5 15.0005 0.9995 18.999
7 6 19.0 27.4841 -1.4975 18.499

Table 3.2.1 Order 1 Results for 3 Test Points

The point to note in examining Table 3.2.1 is that a separate line (i.e., separate values of A1 and
A2) are computed for each test point. The differences from point to point are due to the different
weights assigned to the learning points based upon the distances from the test points (see
Equation 3.1.1). However, if the value of k in Equation 3.1.1 is 0, then all points are equally
weighted and the values of the Ak’s are constant for all test points. This point is illustrated in the
following example. Consider the following table:

Point Data Set x1 x2 Y
1 Learning 1 -6 5
2 Learning 3 8 -11
3 Learning 5 0 9
4 Learning 7 2 -3
5 Learning 9 -5 53
6 Learning 11 7 -57
7 Learning 13 3 -19
8 Learning 15 -1 31
9 Test 2 0 5
10 Test 6 4 -11
11 Test 10 -2 31

Table 3.2.2 11 Data Points: 8 in the Learning Set and 3 in the Test Set

Assuming all learning points are given the same weight (e.g., wI=1), results for all three
algorithms are included in Table 3.2.3:

Point x1 x2 Y y0 y1 y2
9 0 5 5 1.000 1.715 5.249
10 6 4 -11 1.000 -15.450 -11.167
11 -2 3 31 1.000 17.450 31.407

 Table 3.2.3 Results for Test Points using 3 Algorithms with equal weighting

In this table the y0 values are the values computed using the Order 0 Algorithm, and y1 and y2
are the results using the Orders 1 and 2 Algorithms.

The results in Table 3.2.3 illustrate several points. Notice that all 3 values of y0 are the same
(i.e., exactly 1). The value 1 is just the average value of Y for the eight learning points included
in Table 3.2.2. In other words, if all learning points are equally weighted, Order 0 yields a single
value for all test points. At first glance this appears to be a useless result. However, as we will
see in Section 3.3, unit weighting can prove to be quite advantageous, even if the Order 0
Algorithm is used.

The results in Table 3.2.3 for the Orders 1 and 2 Algorithms (i.e., y1 and y2) do vary from test
point to test point even though all learning points were equally weighted. The two equations
obtained were:

 (3.2.16) xxy 21 0065.57152.02848.01 ++=

xxxxxxy 2

221
2
121 0037.09889.00100.08039.01200.10488.32 −−−++= (3.2.17)

Note that both of these equations apply to all three test points. Comparing the values of y0, y1
and y2 to Y in Table 3.2.2, the values of y2 are clearly much close than either the values of y0
and y1. One should not conclude that Order 2 is always preferable to Order 0 or Order 1. For
this particular example the Order 2 polynomial turned out to yield the best results.

3.3 The Bandwidth Concept

If we consider development of a one-dimensional model (i.e., y as a function of x), and if we use
a kernel-smoothing algorithm then the bandwidth concept refers to the definition of the kernel
(e.g., Equation 3.3.1). The bandwidth h is defined as a region around a test point in which only
learning points that fall within this region are given nonzero weights. For a test point located at
xj only learning points that fall within the region xj-h/2 to xj+h/2 are used for the estimation of y.
Clearly, if no learning points fall within this region, then y cannot be estimated. As a result of
this problem, another approach called the K-nearest neighbor estimate (K-N/N) is often used
[Ha90]. For smoothing problems in which the learning values of x may be chosen, a constant
bandwidth is perfectly acceptable. Even if the x values cannot be chosen, if there is high data
density, then a constant bandwidth is still a reasonable choice. If K-N/N is used we can consider
it as a variable bandwidth approach. In other words, for every test point, the bandwidth is chosen
so that the K closest learning points are given nonzero weights.

Can we extend the bandwidth concept to higher dimensions? Equation 3.1.1 provides the clue.
In this equation the kernel is based upon a squared distance. We can easily define a distance in p
dimensional space and base bandwidth upon this distance. It should be clear that if the x
variables in p dimensional space have radically different scales, then a straight Cartesian distance
is useless. The long dimension would totally dominate the calculation. Typically one uses some
sort of normalized distance when considering kernel regression in p dimensional space (where p
is greater than one). The most common methods of normalizing distances are to divide the
actual values for each dimension by either the range or standard deviation of the dimension. In p
dimensional space the value of Dij (i.e., the normalized distance between the jth test point and the

ith learning point is computed as follows:

 ∑ −=
=

p

d
ij NxxD ddjdi

1

22))(((3.3.1)

The value of Dij is just the square root of Dij2. However, it is usually more advantageous to work

with Dij2 because it eliminates the need for taking square roots. If the numbers of learning and
test point are large, then avoiding the square root calculation can save significant compute time.
In this equation xdi is the dth dimension of the ith learning point and xdj is similarly defined for the

jth test point. The Nd term is the normalization constant for the dth dimension (e.g., the range for
dimension d).

The primary reason for introducing the bandwidth concept is to eliminate the effect of very
distant points upon the estimate at a given test point. Clearly this can be accomplished by using
a large smoothing constant. For example, using Equation 3.1.1 we see that the choice of a large
value of k will also eliminate the influence of distant points. However, this might be counter
productive because a large value of k also reduces the smoothing and in the extreme, the
estimates are based primarily on the single nearest neighbor of each test point.

Another reason for using bandwidth (or K-N/N) is to save a considerable amount of compute
time. Defining the number of learning and test points as Nl and Nt, if all learning points are used
to determine all test points, the calculational complexity is O(Nl*Nt). In other words, the time to
complete the calculation increases as the product of Nl and Nt. For modeling of financial
markets, these numbers can be very large and therefore some approach to reducing calculational
complexity is necessary. We will see in Chapter 4 that high performance kernel regression
systems are based upon the bandwidth concept.

3.4 Error Estimates

In Sections 3.1 and 3.2 Order 0, 1 and 2 Algorithms were described. The errors associated with
the predicted values of Y can easily be computed. Typically, predicted errors are expressed as

σy, which is the estimated standard deviation of the prediction. The predicted value of σy for
Order 0 is simply the standard deviation of the weighted average:

∑

−∑
=

=

=

−
n

i
i

ji
n

i
i

y
wn

yYw

1

2

12

)1(

)(
σ (3.4.1)

In this equation yj is the predicted value of the jth test point and is computed as the weighted
average of the n values of Y used to make the prediction (i.e., Equation 3.1.2). For every test
point there is a value of σy. The equation is valid with or without a bandwidth limitation on the
choice of data points. Using a bandwidth (or some similar device to reduce the number of data
points) reduces the value of n. Notice that as n decreases the term (n-1) in the denominator
decreases and tends to increase σy. However, as n decreases, distant points are rejected and one
would expect that the nearer values of Yi would be closer to the actual value of Y at the test point.
Thus one would expect that there is an optimum value of n (or bandwidth) at which the value of
σy is minimized.

Derivation of Equation 3.4.1 follows naturally from the more general derivation of σy for all
three algorithms. The three Algorithms are based upon 3 different fitting functions. The fitting
function for Order 0 is a constant:

 ay = 1 (3.4.2)

Order 1 uses a hyperplane in p dimensional space (Equation 3.2.1):

 (3.2.1) xaxaxaay pp 123121 +++++=

Order 2 uses a complete second order multinomial (Equation 3.2.4):

 (3.2.4) xxbxaay kj
p

j

p

jk
jki

p

j
j ∑ ∑+∑+=

= ==
+

11
11

All three equations can be recast into the form of Equation 3.2.5:

 (3.2.5))(
1

XgAy j

N

j
j∑=

=

For Order 0, N=1 regardless of the dimensionality of the space. For Order 1, N=1+p for a p
dimensional space. For Order 2, N=1+p+p*(p+1)/2. The functions gj(X) can be determined by
comparing Equations 3.4.2, 3.2.1 and 3.2.4 with Equation 3.2.5. Examples for Order 1 and 2 are
included in Section 3.2. For Order 0 the function g1 is 1.

In Section 3.2 the values of the Aj’s were determined by solving the matrix equation 3.2.6. The
elements of the C matrix were determined using Equation 3.2.7. Using this same formulation,
Equation 3.1.2 (the order 0 prediction for test point j) can be derived. Since N=1, Equation 3.2.6
is simply a single equation:

 (3.4.3) VAC 1111 =

where

 (3.4.4) ∑=∑=
==

n

i
i

n

i
i wggwC

1
11

1
11

 (3.4.5) YwYgwV i
n

i
ii

n

i
i ∑=∑=

== 1
1

1
1

Substituting 3.4.4 and 3.4.5 into 3.4.3 we solve for Ai. The resulting equation for Ai is the same
as Equation 3.1.2 and is the predicted value of Y (according to Equation 3.4.2). Thus the general
formulation used in Section 3.2 for Orders 1 and 2 is also applicable for Order 0.

The method of least squares includes a general formulation for σy [Wo67, Ga92]:

 Cgg jk
N

j
k

N

k
jy XX

Nn

S 1

1 1

2)()(−

= =
∑ ∑=

−
σ (3.4.6)

The value of σy is thus determined by taking the square root of Equation 3.4.6. In this equation,
C-1 refers to the inverse matrix of C. The term C-1jk is therefore the term on the jth row of the kth
column of the inverse matrix. The symbol S refers to the sum of the residuals and is computed
as follows:

 (3.4.7))(yiY iwiS
n

i

−= ∑
=

2

1

The values of Yi are the actual values of Y for the learning points and the values of yi are the
computed values of Y for the learning points (using Equation 3.4.2, 3.2.1 or 3.2.4). We can show
that Equation 3.4.6 is equivalent to Equation 3.4.1 for Order 0 by substituting 3.4.7 into 3.4.6
and noting that N=1 and g1(x)=1. Since N=1, C-111 is a scalar and is just 1/C11.

For Orders 1 and 2, the C matrix is computed in order to determine the values of yj. The C
matrix can be inverted to solve Equation 3.2.6, however this is not the fastest way for solving
simultaneous linear equations. There is an additional cost required if this matrix is inverted so in
high performance systems, one would generally invert the matrix only for final results in which
the values of σy are required. For Order 1 with p=1 (i.e., one dimensional), N=2. For this case
Equation 3.4.6 reduces to the following:

)2 1
22

21
12

1
11

2 (
2

CxCxC jjy
n

S −−− ++=
−

σ (3.4.8)

The constant 2 associated with the C-112 term is due to the fact that the C-1 matrix is symmetric

and therefore 2C-112 is used instead of (C-112+C-121). From this equation we see that the value of

σy is different at every xj (i.e., the x value of the jth test point). For Order 2 with p=1 (i.e., one
dimensional), N=3. For this case Equation 3.4.6 reduces to the following:

)222 1
33

41
23

31
22

21
13

21
12

1
11

2 (
3

CxCxCxCxCxC jjjjjy
n

S −−−−−− +++++=
−

σ (3.4.9)

For Order 1 with p=2 (i.e., two dimensional), N=3. For this case Equation 3.4.6 reduces to the
following:

⎟⎟
⎟

⎠

⎞

⎜⎜
⎜

⎝

⎛
=

−−

−−−−

+

++++

− CxCxx

CxCxCxC

n

S

jjj

jjj
y

1
33

2
2

1
2321

1
22

2
1

1
132

1
121

1
112

2

22

3
σ (3.4.10)

Clearly, as p increases, Equation 3.4.6 becomes increasingly cumbersome and there is no
justification for expressing the equation explicitly. In any computer code in which this equation
is used, a modified version of the loop form as expressed in 3.4.6 is preferable to explicit forms
such as 3.4.8 to 3.4.10. The equation can be modified to eliminate the need for computing terms
below the diagonal of the matrix.

To illustrate this calculation, consider the data included in Table 3.2.2. This data includes eight
learning points and three test points. The data is two dimensional (i.e., p=2). The values of y
computed using the three algorithms are included in Table 3.2.3. At this point we will compute
the values of σy for the test points for each of the three algorithms. To simplify the calculation
we will again assume that all learning points are equally weighted (i.e., wi=1). The three fitting
functions for this problem are:

 Order 0: Ay 1= (3.4.11)

 Order 1: xAxAAy 23121 ++= (3.4.12)

 Order 2: (3.4.13) A xxxAA xxAxAAy 2

2
2
1 6215423121 +++++=

For Order 0, the C matrix contains only 1 element and is computed using Equation 3.4.4:

 (3.4.14) 8
8

1
11 =∑=

=i
iwC

The term C-111 is thus 0.125. The value of S is computed using equation 3.4.7 and a result of

7608 (i.e., (5-1)2 + (-11-1)2 + (9-1)2 …) is obtained. The value of σy for all 3 test points is
determined using Equation 3.4.6. Noting that N=1 and g1=1, we obtain the following equation:

 86.135125.0
7

7608

1 *1
11

2 =
−

== −C
n

S
yσ (3.4.15)

The computed value of σy is thus 11.65 and is the same for all three test points (since the value of
yj is the same (i.e., 1) for all three points).

For Order 1, the C matrix is 3 by 3 and therefore contains 9 elements. The elements are
computed according to Equation 3.2.7. Using wi=1, g1=1, g2=x1 and g3=x2 the following matrix
is obtained:

 (3.4.16)
⎪⎩

⎪
⎨
⎧

⎪⎭

⎪
⎬
⎫

=
188888
8868064
8648

C

Inverting this matrix we obtain the C-1 matrix:

 (3.4.17)
⎪⎩

⎪
⎨
⎧

⎪⎭

⎪
⎬
⎫

=
−

−−
−

−

005663.00008091.00008091.0
0008091.0006068.004773.0

0008091.004773.05061.0
1C

Since all learning points are equally weighted, one hyperplane is determined and is applicable to
all three test points. The coefficients of the plane are included in the equation for y1 in Equation
3.2.16 (i.e., 0.2848, 0.7152 and 5.0065). Using this equation S is determined according to
Equation 3.4.7:

 (3.4.18)))23121((
1

2xAxAAY i
n

i
wiS ++−

=
= ∑

The value obtained for S is 3182.3. The values of σy can now be computed from Equation
3.4.10. For example for Point 9 in Table 3.2.2 the value of x1 is 2 and the value of x2 is 0. The
resulting equation is:

 0.216
5

3395.0*3.3182
(

3
)44 1

22
1

12
1

11
2 ==

−
−−− ++= CCC

n

S
yσ (3.4.19)

The value of σy is thus 14.7. The values of σy for Points 10 and 11 are determined in a similar
manner and both values are 11.56. For both of these points the equations are more complicated
than 3.4.19 because the terms containing x2 must be included.

For Order 2, the C matrix is 6 by 6. In a similar manner we obtain the following matrix:

 (3.4.20)

⎪
⎪
⎪

⎭

⎪⎪
⎪

⎬

⎫

⎪
⎪
⎪

⎩

⎪⎪
⎪

⎨

⎧

=

8516436010580
4360105089784

105089784103496

5481152188
115288888
8888128680

5481152888
11528888128
18888680

188888
8868064
8648

C

The calculation proceeds in a manner similar to the Order 1 calculation. In place of Equation
3.4.12 in 3.4.18, Equation 3.4.13 is used. The resulting value of S is 4.044. The resulting values
of σy for the three test points are 1.49, 0.90 and 0.91. These values are considerably less than the
values obtained using the Orders 0 and 1 Algorithms. This is not a surprising result if one
examines Table 3.2.3 and notices how much closer the values of y2 are to the Y values as
compared to y1 and y0. The results are summarized in Table 3.4.1.

Point x1 x2 Y σy (Order 0) σy (Order 1) σy (Order 2)
 9 2 0 5 11.65 14.70 1.49
10 6 4 -11 11.65 11.56 0.90
11 10 -2 31 11.65 11.56 0.91

 Table 3.4.1 Values of σy for 3 algorithms using data from Table 3.2.2

3.5 Applying Kernel Regression to Time Series Data

In the previous sections kernel regression was applied to data in which there was no special
significance to the order in which the records were analyzed. However, in most financial
applications the order of the data is extremely important. For example daily data is ordered by
date and intra-day data is ordered by date/time. There are other possible orderings of the data.
For example, if one wishes to analyze a group of stocks using daily data, one might order the
data on the basis of date/stock_code. Once we acknowledge that the order of the data is
important, then the choice of learning and test data sets becomes crucial.

The time dimension introduces another level of complexity to the analysis: how much
importance do we attach to recent data records as opposed to earlier records? Is there a simple
way to take this effect into consideration? Common sense leads us to the basic conclusion that if
we are to predict a value of Y at a given time, we should only use learning data from an earlier
time1. Using this principle, one would choose learning data as the earlier records and then use
the later records for testing. But this procedure tends to be overly restrictive. For example, if we
1 When the amount of data is relatively small or if there is reason to believe that the model is relatively invariant with time, the
analyst might choose to use future data to make predictions on the past.

have 10 years of daily data from 1988 through 1998 (approximately 2500 records of data), and if
we want to test on about one third of the records, then the last three or four years would be used
for testing. But this seems to be unrealistic particularly for the later test data records. We would,
for example, be modeling records in 1998 using data from 1988 to about 1994 and not including
the more recent records in the modeling process.

There is a simple solution to this problem. All that one must do is to make the learning data set
dynamic. In other words, once a record has been tested, it is then available for updating the
learning data set prior to the testing of the next record. The analyst can allow the learning data
set to grow or alternatively, for each record added, the earliest remaining record in the learning
set can be discarded. These two alternatives will be referred to as the growing option and the
moving window option. For cases in which the learning set is not changed, we will refer to this
alternative as the static option.

To illustrate these three alternatives, consider the data in Table 3.2.2 and the results included in
Table 3.2.3. The results in Table 3.2.3 were computed using the static option. In other words,
learning points 1 through 8 were used to compute predicted values of Y for test points 9, 10 and
11. The three values included in Table 3.2.3 for each test point are the predicted value using the
three algorithms (i.e., Orders 0, 1 and 2). We can repeat the calculations using the growing and
moving window options.

The results for the growing option are included in Table 3.5.1:

Point x1 x2 Y y0 y1 y2
 9 0 5 5 1.000 1.715 5.249
10 6 4 -11 1.444 -14.974 -11.214
11 -2 3 31 0.200 17.695 31.435

 Table 3.5.1 Results for Test Points using the Growing Option

We see that the results for Point 9 are exactly the same as for the static option (i.e., Table 3.2.3).
However, Point 9 is then used in the learning set for the calculations for Point 10 and both Points
9 and 10 are used in the calculations for Point 11. The values of y0 can most easily be verified.
Since all points are weighted equally, the value of y0 for Point 10 is just the average value of Y
for Points 1 through 9 (i.e., (8 * 1.000 + 5) / 9 = 1.444). The value for Point 11 is the average
value for Points 1 through 10 and is computed in a similar manner (i.e., (8*1.000 + 5 – 11) / 10 =
0.200). Using the static option with equally weighted learning points, a single plane was
determined and was used to compute all three values of y1 in Table 3.2.3. One single plane is no
longer applicable when the growing option is used. The coefficients of the plane must be
recomputed for each test point. Similarly, the coefficient used in the computations of the values
of y2 must also be recomputed for each test point.

The results for the moving option are included in Table 3.5.2:

x1 x2 Y y0 y1 y2 Point
9 0 5 5 1.000 1.715 5.249
10 6 4 -11 1.000 -12.664 -11.379
11 -2 3 31 1.000 30.506 31.720

 Table 3.5.2 Results for Test Points using the Moving Window Option

We first note that the results for Point 9 are exactly the same as observed in both Tables 3.2.3
and 3.5.1: a perfectly reasonable outcome. The results for y0 for Points 10 and 11 at first glance
seem strange: they are exactly the same as the results in Table 3.2.3 (i.e., using the static option).
However, inspection of Table 3.2.2 provides the explanation. The computation for Point 10
requires discarding Point 1 and adding Point 9 to the learning data set. Since the Y values for
both of these points are the same (i.e., 5), then the average value of Y remains the same. Since
y0 is just the average value of Y it remains 1. Similarly Point 11 is computed by discarding
Points 1 and 2 and adding Points 9 and 10. Since the Y values of Points 2 and 11 are the same
(i.e., -11) we once again get an average value of 1. However, the values of y1 and y2 for Points
10 and 11 are different from both the static and growing option results. The computation of y1
and y2 require not only the Y values of the learning data points but also the values of x1 and x2.
Since a different set of values is used for each test point, the coefficients change from test point
to test point and the results are different then the results obtained using the other options.

3.6 Searching for a Model

Typically when modeling financial data the analyst proposes a large number of potentially useful
candidate predictors. Depending upon the problem and the available computer resources, the
number of candidate predictors can range up into the hundreds. The strategy proposed for such
analyses is to first try to build a model using each candidate predictor individually. Once all
such 1D (i.e., one-dimensional) spaces have been considered, the analysis proceeds to 2D spaces,
then 3D spaces, etc. If one considers all possible combinations, the number of spaces to be
examined explodes exponentially as the number of candidate predictors increases.

To illustrate the magnitude of the problem, we need to be able to compute C which is the
number of combinations of n things taken d at a time. For our purposes n is the number of
candidate predictors and d is the dimensionality of the spaces. All books on probability theory
include the following equation for :

n
d

Cn
d

)!(!

!
dnd

n
Cn

d −
= (3.6.1)

For example, if n=100 and d=2, the number of possible 2D spaces is 100! / (2! * 98!) which
reduces to 100*99/2 = 4950. If we plan to examine all possible spaces starting from 1D spaces
up to a dimensionality of dmax, then Stotal (the total number of spaces) is simply:

 (3.6.2) ∑
=

=
dmax

CS
d

n
dtotal

1

n dmax=1 dmax=2 dmax=3 dmax=4 dmax=5
 5 5 15 25 30 31
 10 10 55 175 385 637
 20 20 210 1350 6195 21699
 50 50 1275 20875 251175 2369935
100 100 5050 166750 4087975 79375495
150 150 11325 562625 20822900 612422930
200 200 20100 1333500 66018450 2601668490

 Table 3.6.1 Values of Stotal for combinations of n and dmax

Table 3.6.1 includes values of Stotal for various combinations of n and dmax. It is clear from this
table that exhaustive searches for all combinations of candidate predictors become increasingly
costly as n and dmax increase. What is required is a searching strategy that limits the number of
combinations to be examined to a reasonable number. The definition of reasonable is of course
problem dependent and machine dependent. One can quickly estimate the approximate time to
analyze a single space and knowing how much time we wish to devote to the analysis, we can
compute the number of spaces that can be examined in the desired time.

The simplest searching strategy is to use a forward stepwise approach. One would simply locate
the best candidate predictor using a 1D analysis, and then pair this best predictor with all others
to find the best pair. Using the best pair one would then proceed to examination of all triples
that can be made from the best pair to obtain the best triple. This procedure can be carried on to
higher and higher dimensions. The total amount of spaces examined using this procedure is very
small. For example using this very simple forward stepwise approach with n=200 and dmax=5,
we would only have to examine 200 + 199 + 198 + 197 + 196 = 990 spaces. From Table 3.6.1
we see that an exhaustive search of all combinations requires examining over 2.6 billion spaces!
What is really required is a strategy that is a compromise between these two extremes.

A simple modification of the forward stepwise approach is to allow a user specified number of
spaces to survive each level of dimensionality. These survivors would then be used with all
other candidate predictors to create spaces at the next higher dimension. For example, lets
assume a parameter called num_survivors(d) which is the number of survivors that will be used
to create spaces at dimension d+1. Assume n=200 and num_survivors(1) is specified as 10.
After the 200 1D spaces are examined and the 10 best performers are noted, the number of 2D
spaces to be examined is 1945. This number includes all combinations of the 10 best (i.e.,
10*9/2 = 45) plus all combinations of each of the 10 best with all the remaining 190 (i.e., 10*190
= 1900).

Calculation of the number of 3D spaces that must be examined is complicated by the fact that
some predictors might appear in more than one of the best 2D spaces. For example, lets continue
the previous example using n=200 and set num_survivors(2) to 3. Lets assume that the best 3

pairs are (X7,X19), (X21,X47) and (X36,X52). The number of 3D spaces that would have to be
examined would be 3*198 = 594. However, if the third space was (X47,X52) then the 3D space
(X21,X47,X52) would be examined twice unless the search algorithm included some mechanism
for preventing duplicate examinations. In other words, there are only 593 different 3D spaces for
this case. We can, however, state an upper limit upon S(d+1), the number of spaces that will be
examined at dimensionality d+1 using this algorithm:

)()(1)(dn*dorsnum_survivdS −≤+ (3.6.3)

This equation gives the analyst a quick method for estimating the total number of spaces that will
be examined. For example, consider the case of n=200 and dmax=5. Assume that
num_survivors(d) is set to 10 for all values of d. There are 200 1D spaces and we have already
computed S(2)=1945. We can use Equation 3.6.3 to estimate upper limits for S(3), S(4) and S(5):
S(3)<=10*198=1980, S(4)<=10*197=1970 and S(5)<=10*196=1960. The upper limit for Stotal
for this example is 8055. This number of spaces is about 8 times greater than the number of
spaces examined using a simple forward stepwise search (i.e., 990) but is still many orders of
magnitude less than the number of spaces that would be examined if all possible combinations
were considered.

Any analysis must include a definition of the modeling criterion MC. A number of possible
definitions of MC were discussed in Section 1.4. This list is by no means exhaustive. For
example, when modeling financial markets one might prefer some sort of criterion based upon
trading performance. However, regardless of the choice of MC, we end up with a single value
for each space and spaces can be graded on the basis of this value. The best space is simply the
space with the highest value of MC. A search algorithm should include some sort of criterion for
aborting the search when it becomes pointless to proceed. The choice of a maximum value of
dmax is really quite arbitrary. What we would like to choose is a dimensionality which is high
enough to capture the really good model (or models) if such models really exist but on the other
hand not be so high that the data density is absurdly low (see Section 1.3).

One approach to this problem is to treat the parameter num_survivors(d) as an upper limit. An
added criterion for evaluation of a space might be the required improvement from one dimension
to the next higher dimension. If we define this required improvement in MC as δ, then a space
failing to meet this criterion is immediately rejected regardless of the measured value of MC.
For example, assume that one of the survivors of the 2D analyses is the space (X7,X19) and the
measured value of MC for this space is 5.78. Assume that δ = 1 and the 3D spaces
(X7,X11,X19) and (X7,X19,X46) are the best two 3D spaces created from (X7,X19).
Furthermore, the values of MC for these two spaces are 7.31 and 6.49 respectively. The first of
these two spaces would be included in the list of possible survivors but the second would be
immediately rejected. This space (i.e., (X7,X11,X19)) would only become a survivor if the
value 7.31 turns out to be within the top num_survivors(3) of 3D spaces examined. If there are
no survivors for a particular level of dimensionality d, then the search is aborted even if d<dmax.

3.7 Timing Considerations

The use of kernel regression in data modeling for the types of problems associated with financial
markets requires careful consideration of computational time. When one is faced with the task of
developing prediction models in which there are thousands of data records and hundreds of
candidate predictors, computational efficiency is of utmost importance. For computers exploiting
a single processor, the total time for an analysis Ttotal can be estimated as follows:

 Ttotal = Stotal * Tavg (3.7.1)

In this equation Stotal is the total number of spaces examined and Tavg is the average time required
per space. (In Section 4.9, parallel processing is considered and the implications regarding this
equation are discussed.) In the previous section some aspects related to controlling Stotal were
considered. In this section the emphasis is on controlling Tavg.

In Section 3.1 the basic concept of a kernel regression analysis was described. Values of the
dependent variable Y were predicted for ntst test points using nlrn learning points. Using this
very simple approach to kernel regression the time required for an evaluation of a single space
would be O(nlrn*ntst). In other words, the value of Tavg would tend to be proportional to the
product nlrn*ntst. If we assume that both nlrn and ntst are proportional to ntot (i.e., the total
number of data records available for the analysis), we see that Tavg would thus be proportional to
ntot2 . For typical cases in which the values of ntot is several thousand (or even several tens of
thousands if intraday data is used), the values of Tavg become intolerably large.

In Section 3.3 we discussed the bandwidth concept in which only nearby learning points are used
to predict values of Y for each test point. A simple way of accomplishing this is to compute the
distance from every learning point to each test point, and use only those points within a specified
distance. However, the computation of all these distances is still O(nlrn*ntst). It is true that
time will be saved because the remainder of the calculation will be faster. However, we are still
left with a term that is increasing as ntot2 .and eventually this term will dominate the time
required per space.

There is another major problem created by choosing a maximum distance between learning and
test points. For most problems the data density is not even approximately constant throughout a
particular space. In other words there are regions within the space where many learning points
are concentrated and other regions which are sparsely populated. If we must select one distance
for the entire space, then it will yield estimates of Y for some test points based upon many
learning points and some estimates based upon few points. It is also possible that some test data
points will fall within regions where none of the learning points are within the specified distance.

A simple solution to this problem is to specify a new parameter numnn, which is the number of
nearest neighbors that must be used for each test point. To accomplish this in the simplest and
most straightforward manner, for each test point one would first compute all the distances to the
learning points and then sort the distances. The closest numnn learning points would then be
used to compute the estimated value of Y. The time required to sort nlrn distances is
O(nlrn*log(nlrn)). Since we would require ntst such sorts, we would be left with a term which

is O(ntst*nlrn*log(nlrn)). This simple solution is thus plagued with a very high computational
cost. What is required is some method of controlling the choice of learning points for each test
point in such a manner that we achieve this in a rapid and efficient manner. Alternative
approaches to this problem are considered in Chapter 4.

	3.1 The Basic Concept
	3.2 Higher Order Algorithms
	3.3 The Bandwidth Concept
	3.4 Error Estimates
	3.5 Applying Kernel Regression to Time Series Data
	3.6 Searching for a Model
	3.7 Timing Considerations

