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Chapter 3:  Kernel Regression 
 

3.1 The Basic Concept 
 
Kernel regression is one class of data modeling methods that fall within the broader category of 
smoothing methods.  The general purpose of smoothing is to find a line or surface which exhibits 
the general behavior of a dependent variable (lets call it Y) as a function of one or more 
independent variables.  No attempt is made to fit Y exactly at every point.  If there is only one 
independent variable, then the resulting smoothing is a line.  If there is more than one 
independent variable, the smoothing is a surface.  Smoothing methods that are based upon a 
mathematical equation to represent the line or surface are called parametric methods.  On the 
other hand, data driven methods that only smooth the data without trying to find a single 
mathematical equation are called nonparametric methods.  Kernel regression is a nonparametric 
smoothing method for data modeling. 
 
The distinguishing feature of kernel regression methods is the use of a kernel to determine a 
weight given to each data point when computing the smoothed value at any point on the surface.  
There are many ways to choose a kernel.  Wolfgang Hardle reviews the relevant literature in his 
book on this subject [Ha90].  Another overview of the subject by A. Ullah and H. D. Vinod is 
included in Chapter 4, Handbook of Statistics 11 [Ul93]. 
 
When using data to create models, it is useful to separate the data into several categories: 
 

1) Learning data 
2) Testing data 
3) Evaluation data (i.e., Reserved data for final evaluation) 



 
If the amount of available data is small, then there are strategies for using all the data records to 
create a model.  For such cases, the number of learning points is equal to the total number of 
data points and the number of testing and evaluation points are zero.  When modeling financial 
markets this is rarely the case.  There is almost always enough data for both learning and test 
data sets and usually enough to leave some for final evaluation.  The usual strategy is to divide 
the data with nlrn, ntst and nevl points assigned to the three data sets. For various subspaces of 
the candidate predictor space, the nlrn learning points are used to make predictions for the ntst 
testing points and then some measure of performance is computed.  One iterates through spaces 
following a searching strategy.  Only if the final measured performance meets the modeling 
objectives, does one then use the remaining nevl points for final out-of-sample testing. 
 
To illustrate the procedure for a single one dimensional space, consider Table 3.1.1.  In this table 
values are included for the dependent variable Y and a single independent variable X. 
 

Point Data Set X Y 
1 Learning 1 12.0 
2 Learning 3 18.0 
3 Learning 5 20.0 
4 Learning 7 17.0 
5 Test 2 14.0 
6 Test 4 18.5 
7 Test 6 19.0 

 
Table 3.1.1  7 Data Points: 4 in the Learning Set and 3 in the Test Set 
 
In the table we see that nlrn is 4 and ntst is 3.  The 4 learning points are to be used to smooth the 
data in such a way as to estimate the Y values for the 3 test points.  Since Y values are already 
included for the 3 test points we will be able to compare the estimated values with the actual 
values. 
 
There are many methods for performing this task but the following discussion is limited to a 
single variation of kernel regression smoothing.  The first decision that must be made is the 
choice of a kernel.  Hardle discusses many alternatives but for this example a simple exponential 
kernel is used: 
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In this equation the kernel w(xi , xj , k) is the weight applied to the ith learning point when 

estimating the value of Y for the jth test point.  The parameter k is called the smoothing 

parameter and Dij2 is the squared distance between the learning and test points.  If k is assigned a 
value of 0 then all points are equally weighted.  As k increases, the nearer points are assigned 
greater weights relative to points further away from the jth test point.  As k approaches infinity, 
the relative weight of the nearest point becomes infinitely greater relative to all other points. 
 



The simplest kernel regression paradigm is what I will call the Order 0 algorithm: 
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In the statistical literature this equation is often referred to as the Nadaraya-Watson estimator 
[Ha90, Ul93].  In this equation yj is the value of Y computed for the jth test point.  The values Yi 
are the actual values of Y for the learning points.  This simple algorithm computes yj as a 
weighted average of the Y values of the learning points.  As an example, consider only the test 
point at x=2 (i.e., point 5) in Table 3.1.1.  In Table 3.1.2 the kernels required in the calculation 
are included for k=1 and k=0.1: 

  
Point X Y Di52 w for k=1 w for k=0.1 

1 1 12  1  0.3679   0.9048 
2 3 18  1  0.3679   0.9048 
3 5 20  9  0.0001   0.4066 
4 7 17 25 1.4e-11   0.0821 

 
       Table 3.1.2 Computed values of w(xi , x5 , k) for k=1 and k=0.1 
 
From this table and from Equation 3.1.2 we can compute two values of y5.  For k=1 we obtain a 
value of 15.008 which is very close to the average value of points 1 and 2.  The reason why the 
calculation is dominated by these two points is that the weights for these points are much greater 
than the weights for points 3 and 4.  For k=0.1, point 3 and 4 have a significant influence upon 
the calculation and the resulting value is 15.956. 
 
Results for all 3 test points and for both values of k are included in Table 3.1.3: 

 
POINT X Y y (k=1) (Y- y)2 y (k=0.1)    (Y- y)2 

5 2 14.0 15.008 1.0017 15.956    3.8256 
6 4 18.5 18.998 0.2485 17.605    0.8012 
7 6 19.0 18.500 0.2500 18.179    0.6734 

  Sum Not Used 51.5 Not Used 1.5002 Not Used    5.3002 

   Table 3.1.3 Values of y and (Y-y)2 for the test points 
 
The values of y can be used to compare the two alternatives: k=1 and k=0.1.  If we choose VR 
(i.e., Variance Reduction) as the modeling criterion, then Equation 1.4.1 is used.  In this table we 
use the notation y instead of Ycalc as used in Equation 1.4.1.  The sums of (Y(i) – Ycalc(i))2 are 
1.5002 and 5.3002 for k=1 and k=0.1 respectively.  The value of Yavg is 51.5 / 3 = 17.167 and 
the sum of (Y(i) – Yavg)2 is therefore 15.167.  The values of VR are 100*(1 – 1.5002/15.167) = 



90.1 for k=1 and 65.1 for k=0.1.  With so few learning and test points there is really no 
significance to these results.  They do, however, illustrate the basic concept. 
 
It should be emphasized that the values of y (or Ycalc) can be computed at any point and not just 
at the test points.  The smoothed curves generated using k=1 and k=0.1 are shown in Figure 
3.1.1.  For this example, we see that the curve generated by kernels using k=1 is much closer to 
the test points then the curve generated using k=0.1.  In fact, the smoothed k=1 curve gives the 
appearance that it actually passes through the learning points.  This is not the case.  For example, 
the value at x=1 is 12.11 whereas the actual value of the learning point at x=1 is 12.00.  The 
resolution of the figure is just not enough to clearly show this small difference.  The differences 
for the k = 0.1 curve are, however, quite obvious. 
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Figure 3.1.1  Smoothed Curves using k=1 and k=0.1 

 
 
There are many problems associated with the use of Equations 3.1.1 and 3.1.2 and these 
problems will be considered in the following sections. 
 
 

3.2  Higher Order Algorithms 
 
In Section 3.1 a simple example based upon Equation 3.1.2 was discussed.  This equation will be 
referred to as the Order 0 Algorithm.  It uses a polynomial of Order 0 as the fitting function.  (A 
polynominal of Order 0 is just a constant.)  Expanding this notation, the Order 1 Algorithm thus 
uses a polynomial of Order 1.  Rather than a weighted average, this algorithm is based upon a 
hyperplane.  For a single dimension, the hyperplane is a straight line.  In p dimensions it is 
simply: 
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Thus for the Order 1 Algorithm, p+1 coefficients are required to define the hyperplane.  Clearly 
we can define even higher order algorithms.  For example, the Order 2 Algorithm is based upon 
a polynomial of Order 2.  For a single dimension it is a parabola: 
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For two dimensions it includes the interaction term as well as the second order terms:  
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Going to three dimensions, there is the constant term, 3 first order terms, 3 second order terms 
and 3 interactions terms.  There are therefore 10 coefficient (i.e., a1 a2, …, a10).  We see that as 
the dimensionality of the space increases, the number of coefficients required to specify the 
model increases rapidly.  The Order 2 Algorithm equation in p dimensions is: 
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In general, the number of coefficients required in p dimensional space for the Order 2 Algorithm 
is 1 + p + p*(p+1)/2.  We could continue to even higher order algorithms, but for applications in 
which there is a substantial noise component in the signal (like in financial market modeling), 
there is no sense in going to higher order algorithms. 
 
Once an algorithm has been selected, the coefficients are determined for every test point using 
the learning data points.  Typically the method of linear least squares with weighting is used to 
determine the N coefficients.  We can recast Equations 3.2.1 and 3.2.4 as follows: 
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Comparing Equations 3.2.1 and 3.2.5, we see that for the Order 1 Algorithm, Aj is just aj.  
Comparing Equations 3.2.4 and 3.2.5, the connection is less obvious for Order 2.  For example, 
for 2 dimensions (i.e., p=2), b11 is renumbered as A4, b12 is renumbered as A5, and b22 is 
renumbered as A6.  In Equation 3.2.5, gj(X) is a function of the vector X.  For example, for 
Equation 3.2.1 with p=3 we see that g1=1,  g2=x1,  g3=x2 and g4=x3.  For Equation 3.2.4 with 
p=3 the first four gj’s are the same as for Equation 3.2.1.  The following gj’s are g5=x12, g6=x1x2, 

g7=x1x3, g8=x22, g9=x2x3 and g10=x32.  Using Equation 3.2.5 the least square formulation is the 
same for both Order 1 and Order 2 Algorithms: 
 
          (3.2.6) VCA =
 



A derivation of this equation is included in Appendix A.  In this equation C is an N by N matrix 
and A and V are vectors of length N.  The C matrix is symmetrical and the term Cjk is defined as 
follows: 
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The term wi is the weight computed for the ith learning point using, for example, Equation 3.1.1.  

The term Xi is the X vector for the ith learning point.  (The reader should note the difference 
between uppercase X and lowercase x.  The lowercase x refers to an element of the X vector.)  V 
vector terms are defined as follows: 
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In this equation Yi is the value of Y for the ith learning point.  Once again, the difference between 
uppercase and lowercase should be noted.  Uppercase Y is used for actual values of Y and 
lowercase y is used for calculated values of Y. 
 
To illustrate the process, we can repeat the example from Section 3.1 but using the Order 1 
Algorithm.  Using the data in Table 3.1.1 and the weights as shown in Table 3.1.2 for k=1, the C 
matrix and V vector must first be computed and then the A vector is determined by solving the N 
linear equations represented by Equation 3.2.6.  This example is for a one dimensional space so 
N is 2.  Using Equation 3.2.5, the equation for y is: 
  xAAy 21 +=         (3.2.9) 
 
From this equation we see that g1 = 1 and g2 = x.  There is no need to use a subscript for x as we 
are considering the one dimensional case.  In the following equations xi refers to the value of x 
for the ith learning point.  The equations for the terms of C and V are therefore as follows: 
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The two equations to be solved are: 
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Since the C matrix is symmetric, C21 = C12.  Solving 3.2.15, the resulting values of A1 and A2 are 
9.0034 and 2.9980.  Using Equation 3.2.9 with X=2 we get a value of y equal to 14.999 (i.e., 
9.0034 + 2*2.9980).  The results for all 3 test points are summarized in table 3.2.1. 

 
Point X Y A1 A2 Ycalc 
5 2 14.0  9.0034  2.9980 14.999 
6 4 18.5 15.0005  0.9995 18.999 
7 6 19.0 27.4841 -1.4975 18.499 

Table 3.2.1  Order 1 Results for 3 Test Points 
 
The point to note in examining Table 3.2.1 is that a separate line (i.e., separate values of A1 and 
A2) are computed for each test point.  The differences from point to point are due to the different 
weights assigned to the learning points based upon the distances from the test points (see 
Equation 3.1.1).  However, if the value of k in Equation 3.1.1 is 0, then all points are equally 
weighted and the values of the Ak’s are constant for all test points.  This point is illustrated in the 
following example.  Consider the following table: 

 
Point Data Set x1 x2 Y 
1 Learning  1 -6   5 
2 Learning  3  8 -11 
3 Learning  5  0   9 
4 Learning  7  2  -3 
5 Learning  9 -5  53 
6 Learning 11  7 -57 
7 Learning 13  3 -19 
8 Learning 15 -1  31 
9 Test  2  0   5 
10 Test  6  4 -11 
11 Test 10 -2  31 

Table 3.2.2  11 Data Points: 8 in the Learning Set and 3 in the Test Set 
 
Assuming all learning points are given the same weight (e.g., wI=1), results for all three 
algorithms are included in Table 3.2.3: 

 



Point x1 x2 Y y0 y1 y2 
9  0 5   5 1.000   1.715   5.249 
10  6 4 -11 1.000 -15.450 -11.167 
11 -2 3  31 1.000  17.450  31.407 

     Table 3.2.3  Results for Test Points using 3 Algorithms with equal weighting 
 
In this table the y0 values are the values computed using the Order 0 Algorithm, and y1 and y2 
are the results using the Orders 1 and 2 Algorithms. 
 
The results in Table 3.2.3 illustrate several points.  Notice that all 3 values of y0 are the same 
(i.e., exactly 1).  The value 1 is just the average value of Y for the eight learning points included 
in Table 3.2.2.  In other words, if all learning points are equally weighted, Order 0 yields a single 
value for all test points.  At first glance this appears to be a useless result.  However, as we will 
see in Section 3.3, unit weighting can prove to be quite advantageous, even if the Order 0 
Algorithm is used. 
 
The results in Table 3.2.3 for the Orders 1 and 2 Algorithms (i.e., y1 and y2) do vary from test 
point to test point even though all learning points were equally weighted.  The two equations 
obtained were: 
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Note that both of these equations apply to all three test points.  Comparing the values of y0, y1 
and y2 to Y in Table 3.2.2, the values of y2 are clearly much close than either the values of y0 
and y1.  One should not conclude that Order 2 is always preferable to Order 0 or Order 1.  For 
this particular example the Order 2 polynomial turned out to yield the best results. 
 
 

3.3  The Bandwidth Concept 
 
If we consider development of a one-dimensional model (i.e., y as a function of x), and if we use 
a kernel-smoothing algorithm then the bandwidth concept refers to the definition of the kernel 
(e.g., Equation 3.3.1).  The bandwidth h is defined as a region around a test point in which only 
learning points that fall within this region are given nonzero weights.  For a test point located at 
xj only learning points that fall within the region xj-h/2 to xj+h/2 are used for the estimation of y.  
Clearly, if no learning points fall within this region, then y cannot be estimated.  As a result of 
this problem, another approach called the K-nearest neighbor estimate (K-N/N) is often used 
[Ha90].  For smoothing problems in which the learning values of x may be chosen, a constant 
bandwidth is perfectly acceptable.  Even if the x values cannot be chosen, if there is high data 
density, then a constant bandwidth is still a reasonable choice.  If K-N/N is used we can consider 
it as a variable bandwidth approach.  In other words, for every test point, the bandwidth is chosen 
so that the K closest learning points are given nonzero weights. 
 



Can we extend the bandwidth concept to higher dimensions?  Equation 3.1.1 provides the clue.  
In this equation the kernel is based upon a squared distance.  We can easily define a distance in p 
dimensional space and base bandwidth upon this distance.  It should be clear that if the x 
variables in p dimensional space have radically different scales, then a straight Cartesian distance 
is useless.  The long dimension would totally dominate the calculation.  Typically one uses some 
sort of normalized distance when considering kernel regression in p dimensional space (where p 
is greater than one).  The most common methods of normalizing distances are to divide the 
actual values for each dimension by either the range or standard deviation of the dimension.  In p 
dimensional space the value of Dij (i.e., the normalized distance between the jth test point and the 

ith learning point is computed as follows: 
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The value of Dij is just the square root of Dij2.  However, it is usually more advantageous to work 

with Dij2 because it eliminates the need for taking square roots.  If the numbers of learning and 
test point are large, then avoiding the square root calculation can save significant compute time.  
In this equation xdi is the dth dimension of the ith learning point and xdj is similarly defined for the 

jth test point.  The Nd term is the normalization constant for the dth dimension (e.g., the range for 
dimension d). 
 
The primary reason for introducing the bandwidth concept is to eliminate the effect of very 
distant points upon the estimate at a given test point.  Clearly this can be accomplished by using 
a large smoothing constant.  For example, using Equation 3.1.1 we see that the choice of a large 
value of k will also eliminate the influence of distant points.  However, this might be counter 
productive because a large value of k also reduces the smoothing and in the extreme, the 
estimates are based primarily on the single nearest neighbor of each test point. 
 
Another reason for using bandwidth (or K-N/N) is to save a considerable amount of compute 
time.  Defining the number of learning and test points as Nl and Nt, if all learning points are used 
to determine all test points, the calculational complexity is O(Nl*Nt).  In other words, the time to 
complete the calculation increases as the product of Nl and Nt.  For modeling of financial 
markets, these numbers can be very large and therefore some approach to reducing calculational 
complexity is necessary.  We will see in Chapter 4 that high performance kernel regression 
systems are based upon the bandwidth concept. 
 
 

3.4  Error Estimates 
 
In Sections 3.1 and 3.2 Order 0, 1 and 2 Algorithms were described.  The errors associated with 
the predicted values of Y can easily be computed.  Typically, predicted errors are expressed as 



σy, which is the estimated standard deviation of the prediction.  The predicted value of σy for 
Order 0 is simply the standard deviation of the weighted average: 
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In this equation yj is the predicted value of the jth test point and is computed as the weighted 
average of the n values of Y used to make the prediction (i.e., Equation 3.1.2). For every test 
point there is a value of σy.  The equation is valid with or without a bandwidth limitation on the 
choice of data points.  Using a bandwidth (or some similar device to reduce the number of data 
points) reduces the value of n.  Notice that as n decreases the term (n-1) in the denominator 
decreases and tends to increase σy.  However, as n decreases, distant points are rejected and one 
would expect that the nearer values of Yi would be closer to the actual value of Y at the test point.  
Thus one would expect that there is an optimum value of n (or bandwidth) at which the value of 
σy is minimized. 
 
Derivation of Equation 3.4.1 follows naturally from the more general derivation of σy for all 
three algorithms.  The three Algorithms are based upon 3 different fitting functions.  The fitting 
function for Order 0 is a constant: 
 
  ay = 1        (3.4.2) 
 
Order 1 uses a hyperplane in p dimensional space (Equation 3.2.1): 
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Order 2 uses a complete second order multinomial (Equation 3.2.4): 
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All three equations can be recast into the form of Equation 3.2.5: 
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For Order 0, N=1 regardless of the dimensionality of the space.  For Order 1, N=1+p for a p 
dimensional space.  For Order 2, N=1+p+p*(p+1)/2.  The functions gj(X) can be determined by 
comparing Equations 3.4.2, 3.2.1 and 3.2.4 with Equation 3.2.5.  Examples for Order 1 and 2 are 
included in Section 3.2.  For Order 0 the function g1 is 1. 
 



In Section 3.2 the values of the Aj’s were determined by solving the matrix equation 3.2.6.  The 
elements of the C matrix were determined using Equation 3.2.7.  Using this same formulation, 
Equation 3.1.2 (the order 0 prediction for test point j) can be derived.  Since N=1, Equation 3.2.6 
is simply a single equation: 
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Substituting 3.4.4 and 3.4.5 into 3.4.3 we solve for Ai.  The resulting equation for Ai is the same 
as Equation 3.1.2 and is the predicted value of Y (according to Equation 3.4.2).  Thus the general 
formulation used in Section 3.2 for Orders 1 and 2 is also applicable for Order 0. 
 
The method of least squares includes a general formulation for σy [Wo67, Ga92]: 
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The value of σy is thus determined by taking the square root of Equation 3.4.6.  In this equation, 
C-1 refers to the inverse matrix of C.  The term C-1jk is therefore the term on the jth row of the kth 
column of the inverse matrix.  The symbol S refers to the sum of the residuals and is computed 
as follows: 
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The values of Yi are the actual values of Y for the learning points and the values of yi are the 
computed values of Y for the learning points (using Equation 3.4.2, 3.2.1 or 3.2.4).  We can show 
that Equation 3.4.6 is equivalent to Equation 3.4.1 for Order 0 by substituting 3.4.7 into 3.4.6 
and noting that N=1 and g1(x)=1.  Since N=1, C-111 is a scalar and is just 1/C11. 
 
For Orders 1 and 2, the C matrix is computed in order to determine the values of yj.  The C 
matrix can be inverted to solve Equation 3.2.6, however this is not the fastest way for solving 
simultaneous linear equations.  There is an additional cost required if this matrix is inverted so in 
high performance systems, one would generally invert the matrix only for final results in which 
the values of σy are required.  For Order 1 with p=1 (i.e., one dimensional), N=2.  For this case 
Equation 3.4.6 reduces to the following: 
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The constant 2 associated with the C-112 term is due to the fact that the C-1 matrix is symmetric 

and therefore 2C-112 is used instead of (C-112+C-121).  From this equation we see that the value of 

σy is different at every xj (i.e., the x value of the jth test point). For Order 2 with p=1 (i.e., one 
dimensional), N=3.  For this case Equation 3.4.6 reduces to the following: 
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For Order 1 with p=2 (i.e., two dimensional), N=3.  For this case Equation 3.4.6 reduces to the 
following: 
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Clearly, as p increases, Equation 3.4.6 becomes increasingly cumbersome and there is no 
justification for expressing the equation explicitly.  In any computer code in which this equation 
is used, a modified version of the loop form as expressed in 3.4.6 is preferable to explicit forms 
such as 3.4.8 to 3.4.10.  The equation can be modified to eliminate the need for computing terms 
below the diagonal of the matrix. 
 
To illustrate this calculation, consider the data included in Table 3.2.2.  This data includes eight 
learning points and three test points.  The data is two dimensional (i.e., p=2).  The values of y 
computed using the three algorithms are included in Table 3.2.3.  At this point we will compute 
the values of σy for the test points for each of the three algorithms.  To simplify the calculation 
we will again assume that all learning points are equally weighted (i.e., wi=1).   The three fitting 
functions for this problem are: 
 
 Order 0: Ay 1=        (3.4.11) 
 
 Order 1: xAxAAy 23121 ++=     (3.4.12) 
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For Order 0, the C matrix contains only 1 element and is computed using Equation 3.4.4: 
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The term C-111 is thus 0.125.  The value of S is computed using equation 3.4.7 and a result of 

7608 (i.e., (5-1)2 + (-11-1)2 + (9-1)2 …) is obtained.  The value of σy for all 3 test points is 
determined using Equation 3.4.6.  Noting that N=1 and g1=1, we obtain the following equation: 
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The computed value of σy is thus 11.65 and is the same for all three test points (since the value of 
yj is the same (i.e., 1) for all three points). 
 
For Order 1, the C matrix is 3 by 3 and therefore contains 9 elements.  The elements are 
computed according to Equation 3.2.7.  Using wi=1, g1=1, g2=x1 and g3=x2 the following matrix 
is obtained: 
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Inverting this matrix we obtain the C-1 matrix: 
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Since all learning points are equally weighted, one hyperplane is determined and is applicable to 
all three test points.  The coefficients of the plane are included in the equation for y1 in Equation 
3.2.16 (i.e., 0.2848, 0.7152 and 5.0065).  Using this equation S is determined according to 
Equation 3.4.7: 
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The value obtained for S is 3182.3.  The values of σy can now be computed from Equation 
3.4.10.  For example for Point 9 in Table 3.2.2 the value of x1 is 2 and the value of x2  is 0.  The 
resulting equation is: 
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The value of σy is thus 14.7.  The values of σy for Points 10 and 11 are determined in a similar 
manner and both values are 11.56.  For both of these points the equations are more complicated 
than 3.4.19 because the terms containing x2 must be included. 
 
For Order 2, the C matrix is 6 by 6.  In a similar manner we obtain the following matrix: 
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The calculation proceeds in a manner similar to the Order 1 calculation.  In place of Equation 
3.4.12 in 3.4.18, Equation 3.4.13 is used.  The resulting value of S is 4.044.  The resulting values 
of σy for the three test points are 1.49, 0.90 and 0.91.  These values are considerably less than the 
values obtained using the Orders 0 and 1 Algorithms.  This is not a surprising result if one 
examines Table 3.2.3 and notices how much closer the values of y2 are to the Y values as 
compared to y1 and y0.  The results are summarized in Table 3.4.1. 

 
Point x1 x2 Y σy (Order 0) σy (Order 1) σy (Order 2) 
 9  2  0   5 11.65 14.70 1.49 
10  6  4 -11 11.65 11.56 0.90 
11 10 -2  31 11.65 11.56 0.91 

     Table 3.4.1  Values of σy for 3 algorithms using data from Table 3.2.2 
 
 

3.5  Applying Kernel Regression to Time Series Data 
 
In the previous sections kernel regression was applied to data in which there was no special 
significance to the order in which the records were analyzed.  However, in most financial 
applications the order of the data is extremely important.  For example daily data is ordered by 
date and intra-day data is ordered by date/time.  There are other possible orderings of the data.  
For example, if one wishes to analyze a group of stocks using daily data, one might order the 
data on the basis of date/stock_code.  Once we acknowledge that the order of the data is 
important, then the choice of learning and test data sets becomes crucial. 
 
The time dimension introduces another level of complexity to the analysis: how much 
importance do we attach to recent data records as opposed to earlier records?  Is there a simple 
way to take this effect into consideration?  Common sense leads us to the basic conclusion that if 
we are to predict a value of Y at a given time, we should only use learning data from an earlier 
time1.  Using this principle, one would choose learning data as the earlier records and then use 
the later records for testing.  But this procedure tends to be overly restrictive.  For example, if we 
1 When the amount of data is relatively small or if there is reason to believe that the model is relatively invariant with time, the 
analyst might choose to use future data to make predictions on the past. 



have 10 years of daily data from 1988 through 1998 (approximately 2500 records of data), and if 
we want to test on about one third of the records, then the last three or four years would be used 
for testing.  But this seems to be unrealistic particularly for the later test data records.  We would, 
for example, be modeling records in 1998 using data from 1988 to about 1994 and not including 
the more recent records in the modeling process. 
 
There is a simple solution to this problem.  All that one must do is to make the learning data set 
dynamic.  In other words, once a record has been tested, it is then available for updating the 
learning data set prior to the testing of the next record.  The analyst can allow the learning data 
set to grow or alternatively, for each record added, the earliest remaining record in the learning 
set can be discarded.  These two alternatives will be referred to as the growing option and the 
moving window option.  For cases in which the learning set is not changed, we will refer to this 
alternative as the static option. 
 
To illustrate these three alternatives, consider the data in Table 3.2.2 and the results included in 
Table 3.2.3.  The results in Table 3.2.3 were computed using the static option.  In other words, 
learning points 1 through 8 were used to compute predicted values of Y for test points 9, 10 and 
11.  The three values included in Table 3.2.3 for each test point are the predicted value using the 
three algorithms (i.e., Orders 0, 1 and 2).  We can repeat the calculations using the growing and 
moving window options. 
 
The results for the growing option are included in Table 3.5.1: 

 
Point x1 x2 Y y0 y1 y2 
 9  0 5   5 1.000   1.715   5.249 
10  6 4 -11 1.444 -14.974 -11.214 
11 -2 3  31 0.200  17.695  31.435 

        Table 3.5.1  Results for Test Points using the Growing Option 
 
We see that the results for Point 9 are exactly the same as for the static option (i.e., Table 3.2.3).  
However, Point 9 is then used in the learning set for the calculations for Point 10 and both Points 
9 and 10 are used in the calculations for Point 11.  The values of y0 can most easily be verified.  
Since all points are weighted equally, the value of y0 for Point 10 is just the average value of Y 
for Points 1 through 9 (i.e., (8 * 1.000 + 5) / 9 = 1.444).  The value for Point 11 is the average 
value for Points 1 through 10 and is computed in a similar manner (i.e., (8*1.000 + 5 – 11) / 10 = 
0.200).  Using the static option with equally weighted learning points, a single plane was 
determined and was used to compute all three values of y1 in Table 3.2.3.  One single plane is no 
longer applicable when the growing option is used.  The coefficients of the plane must be 
recomputed for each test point.  Similarly, the coefficient used in the computations of the values 
of y2 must also be recomputed for each test point. 
 
The results for the moving option are included in Table 3.5.2: 

 



x1 x2 Y y0 y1 y2 Point 
9  0 5   5 1.000   1.715   5.249 
10  6 4 -11 1.000 -12.664 -11.379 
11 -2 3  31 1.000  30.506  31.720 

           Table 3.5.2  Results for Test Points using the Moving Window Option 
 
We first note that the results for Point 9 are exactly the same as observed in both Tables 3.2.3 
and 3.5.1: a perfectly reasonable outcome.  The results for y0 for Points 10 and 11 at first glance 
seem strange: they are exactly the same as the results in Table 3.2.3 (i.e., using the static option).  
However, inspection of Table 3.2.2 provides the explanation.  The computation for Point 10 
requires discarding Point 1 and adding Point 9 to the learning data set.  Since the Y values for 
both of these points are the same (i.e., 5), then the average value of Y remains the same.  Since 
y0 is just the average value of Y it remains 1.  Similarly Point 11 is computed by discarding 
Points 1 and 2 and adding Points 9 and 10.  Since the Y values of Points 2 and 11 are the same 
(i.e., -11) we once again get an average value of 1.  However, the values of y1 and y2 for Points 
10 and 11 are different from both the static and growing option results.  The computation of y1 
and y2 require not only the Y values of the learning data points but also the values of x1 and x2.  
Since a different set of values is used for each test point, the coefficients change from test point 
to test point and the results are different then the results obtained using the other options. 
 
 
 

3.6  Searching for a Model 
 
Typically when modeling financial data the analyst proposes a large number of potentially useful 
candidate predictors.  Depending upon the problem and the available computer resources, the 
number of candidate predictors can range up into the hundreds.  The strategy proposed for such 
analyses is to first try to build a model using each candidate predictor individually.  Once all 
such 1D (i.e., one-dimensional) spaces have been considered, the analysis proceeds to 2D spaces, 
then 3D spaces, etc.  If one considers all possible combinations, the number of spaces to be 
examined explodes exponentially as the number of candidate predictors increases. 
 
To illustrate the magnitude of the problem, we need to be able to compute C  which is the 
number of combinations of n things taken d at a time.  For our purposes n is the number of 
candidate predictors and d is the dimensionality of the spaces.  All books on probability theory 
include the following equation for : 
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For example, if n=100 and d=2, the number of possible 2D spaces is 100! / (2! * 98!) which 
reduces to 100*99/2 = 4950.  If we plan to examine all possible spaces starting from 1D spaces 
up to a dimensionality of dmax, then Stotal  (the total number of spaces) is simply: 
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n dmax=1 dmax=2 dmax=3 dmax=4 dmax=5 
  5   5    15      25       30         31 
 10  10    55     175      385        637 
 20  20   210    1350     6195      21699 
 50  50  1275   20875   251175    2369935 
100 100  5050  166750  4087975   79375495 
150 150 11325  562625 20822900  612422930 
200 200 20100 1333500 66018450 2601668490 

                Table 3.6.1  Values of Stotal for combinations of n and dmax 
 
 
Table 3.6.1 includes values of Stotal for various combinations of n and dmax.  It is clear from this 
table that exhaustive searches for all combinations of candidate predictors become increasingly 
costly as n and dmax increase.  What is required is a searching strategy that limits the number of 
combinations to be examined to a reasonable number.  The definition of reasonable is of course 
problem dependent and machine dependent.  One can quickly estimate the approximate time to 
analyze a single space and knowing how much time we wish to devote to the analysis, we can 
compute the number of spaces that can be examined in the desired time. 
 
The simplest searching strategy is to use a forward stepwise approach.  One would simply locate 
the best candidate predictor using a 1D analysis, and then pair this best predictor with all others 
to find the best pair.  Using the best pair one would then proceed to examination of all triples 
that can be made from the best pair to obtain the best triple.  This procedure can be carried on to 
higher and higher dimensions.  The total amount of spaces examined using this procedure is very 
small.  For example using this very simple forward stepwise approach with n=200 and dmax=5, 
we would only have to examine 200 + 199 + 198 + 197 + 196 = 990 spaces.  From Table 3.6.1 
we see that an exhaustive search of all combinations requires examining over 2.6 billion spaces!  
What is really required is a strategy that is a compromise between these two extremes. 
 
A simple modification of the forward stepwise approach is to allow a user specified number of 
spaces to survive each level of dimensionality.  These survivors would then be used with all 
other candidate predictors to create spaces at the next higher dimension.  For example, lets 
assume a parameter called num_survivors(d) which is the number of survivors that will be used 
to create spaces at dimension d+1.  Assume n=200 and num_survivors(1) is specified as 10.  
After the 200 1D spaces are examined and the 10 best performers are noted, the number of 2D 
spaces to be examined is 1945.  This number includes all combinations of the 10 best (i.e., 
10*9/2 = 45) plus all combinations of each of the 10 best with all the remaining 190 (i.e., 10*190 
= 1900). 
 
Calculation of the number of 3D spaces that must be examined is complicated by the fact that 
some predictors might appear in more than one of the best 2D spaces.  For example, lets continue 
the previous example using n=200 and set num_survivors(2) to 3.  Lets assume that the best 3 



pairs are (X7,X19), (X21,X47) and (X36,X52).  The number of 3D spaces that would have to be 
examined would be 3*198 = 594.  However, if the third space was (X47,X52) then the 3D space 
(X21,X47,X52) would be examined twice unless the search algorithm included some mechanism 
for preventing duplicate examinations.  In other words, there are only 593 different 3D spaces for 
this case.  We can, however, state an upper limit upon S(d+1), the number of spaces that will be 
examined at dimensionality d+1 using this algorithm: 
 
  )()(1)( dn*dorsnum_survivdS −≤+     (3.6.3) 
 
This equation gives the analyst a quick method for estimating the total number of spaces that will 
be examined.  For example, consider the case of n=200 and dmax=5.  Assume that 
num_survivors(d) is set to 10 for all values of d.  There are 200 1D spaces and we have already 
computed S(2)=1945. We can use Equation 3.6.3 to estimate upper limits for S(3), S(4) and S(5):  
S(3)<=10*198=1980, S(4)<=10*197=1970 and S(5)<=10*196=1960.  The upper limit for Stotal  
for this example is 8055.  This number of spaces is about 8 times greater than the number of 
spaces examined using a simple forward stepwise search (i.e., 990) but is still many orders of 
magnitude less than the number of spaces that would be examined if all possible combinations 
were considered. 
 
Any analysis must include a definition of the modeling criterion MC.  A number of possible 
definitions of MC were discussed in Section 1.4.  This list is by no means exhaustive.  For 
example, when modeling financial markets one might prefer some sort of criterion based upon 
trading performance.  However, regardless of the choice of MC, we end up with a single value 
for each space and spaces can be graded on the basis of this value.  The best space is simply the 
space with the highest value of MC.  A search algorithm should include some sort of criterion for 
aborting the search when it becomes pointless to proceed.  The choice of a maximum value of 
dmax is really quite arbitrary.  What we would like to choose is a dimensionality which is high 
enough to capture the really good model (or models) if such models really exist but on the other 
hand not be so high that the data density is absurdly low (see Section 1.3). 
 
One approach to this problem is to treat the parameter num_survivors(d) as an upper limit.  An 
added criterion for evaluation of a space might be the required improvement from one dimension 
to the next higher dimension.  If we define this required improvement in MC as δ, then a space 
failing to meet this criterion is immediately rejected regardless of the measured value of MC.  
For example, assume that one of the survivors of the 2D analyses is the space (X7,X19) and the 
measured value of MC for this space is 5.78.  Assume that δ = 1 and the 3D spaces 
(X7,X11,X19) and (X7,X19,X46) are the best two 3D spaces created from (X7,X19).  
Furthermore, the values of MC for these two spaces are 7.31 and 6.49 respectively.  The first of 
these two spaces would be included in the list of possible survivors but the second would be 
immediately rejected.  This space (i.e., (X7,X11,X19)) would only become a survivor if the 
value 7.31 turns out to be within the top num_survivors(3) of 3D spaces examined.  If there are 
no survivors for a particular level of dimensionality d, then the search is aborted even if d<dmax. 
 
 
 



3.7 Timing Considerations 
 
The use of kernel regression in data modeling for the types of problems associated with financial 
markets requires careful consideration of computational time.  When one is faced with the task of 
developing prediction models in which there are thousands of data records and hundreds of 
candidate predictors, computational efficiency is of utmost importance. For computers exploiting 
a single processor, the total time for an analysis Ttotal can be estimated as follows: 
 
  Ttotal = Stotal * Tavg        (3.7.1) 
 
In this equation Stotal is the total number of spaces examined and Tavg is the average time required 
per space. (In Section 4.9, parallel processing is considered and the implications regarding this 
equation are discussed.)  In the previous section some aspects related to controlling Stotal were 
considered.  In this section the emphasis is on controlling Tavg. 
 
In Section 3.1 the basic concept of a kernel regression analysis was described.  Values of the 
dependent variable Y were predicted for ntst test points using nlrn learning points.  Using this 
very simple approach to kernel regression the time required for an evaluation of a single space 
would be O(nlrn*ntst).  In other words, the value of Tavg would tend to be proportional to the 
product nlrn*ntst.  If we assume that both nlrn and ntst are proportional to ntot (i.e., the total 
number of data records available for the analysis), we see that Tavg would thus be proportional to 
ntot2 .  For typical cases in which the values of ntot is several thousand (or even several tens of 
thousands if intraday data is used), the values of Tavg become intolerably large. 
 
In Section 3.3 we discussed the bandwidth concept in which only nearby learning points are used 
to predict values of Y for each test point.  A simple way of accomplishing this is to compute the 
distance from every learning point to each test point, and use only those points within a specified 
distance.  However, the computation of all these distances is still O(nlrn*ntst).  It is true that 
time will be saved because the remainder of the calculation will be faster.  However, we are still 
left with a term that is increasing as ntot2 .and eventually this term will dominate the time 
required per space. 
 
There is another major problem created by choosing a maximum distance between learning and 
test points.  For most problems the data density is not even approximately constant throughout a 
particular space.  In other words there are regions within the space where many learning points 
are concentrated and other regions which are sparsely populated.  If we must select one distance 
for the entire space, then it will yield estimates of Y for some test points based upon many 
learning points and some estimates based upon few points.  It is also possible that some test data 
points will fall within regions where none of the learning points are within the specified distance. 
 
A simple solution to this problem is to specify a new parameter numnn, which is the number of 
nearest neighbors that must be used for each test point.  To accomplish this in the simplest and 
most straightforward manner, for each test point one would first compute all the distances to the 
learning points and then sort the distances.  The closest numnn learning points would then be 
used to compute the estimated value of Y.  The time required to sort nlrn distances is 
O(nlrn*log(nlrn)).  Since we would require ntst such sorts, we would be left with a term which 



is O(ntst*nlrn*log(nlrn)).  This simple solution is thus plagued with a very high computational 
cost.  What is required is some method of controlling the choice of learning points for each test 
point in such a manner that we achieve this in a rapid and efficient manner.  Alternative 
approaches to this problem are considered in Chapter 4. 
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