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Chapter 2:  Data Modeling of Time Series 

 
2.1 The Time Series Problem 
 

Time series present some unique modeling problems.  When dealing with time series 

the analyst should ask the following questions: 

 

1) Is there enough data available to develop and test a model? 

2) For the proposed candidate predictors does the available data adequately populate 

the various spaces? 

3) Is serial correlation a major problem? 

4) Does the model hold up over time?  (In other words, can we be reasonably assured 

that the model itself doesn’t change with time?  Or if it does change, is the change 

gradual?) 

 

1) Is there enough data available?  When modeling financial markets, the 

availability of data is dependent upon the time scale of the data.  For example, if one 

is using daily data, then there are only about 250 data points per year.  Ten years of 

data would thus include about 2500 points but then question number (4) becomes 

relevant: Does the market behavior ten years ago have any relevance today?  One 

must develop and use testing procedures to ascertain the relevance of models.  If the 

modeling is based upon a much more rapid time scale (say 5 minute time periods), 

then much more data is available per day.  For example, for markets that open at 8:30 

A.M. and close at 16 P.M., there are 90 five minute time periods per day.  So in one 

year there are approximately 90*250 (i.e., 22500) available data points.  Clearly it is 

much easier to develop models when there is a lot more available data. 

 

One method for increasing the amount of available data is to include data from a 

group of financial series rather than just a single series.  For example consider a 

common stock database in which daily prices are available.  Rather than trying to 

model the fractional price changes for one particular stock, it is much easier to try to 

model a group of similar stocks (for example, from a particular industrial group).  An 

application in which monthly data from over 7000 different stocks are analyzed as a 

group is discussed in Chapters 6 and 7. 

 

2) Does the data adequately populate the spaces under consideration?  Coverage 

of the space is indeed an important concept in modeling.  When modeling financial 

markets one first must make sure that there is adequate representation of the different 

types of markets in both the data used to develop the model and the data used to test 

the model.  For example, consider a situation in which the modeling data is taken only 



from time periods which could be described as “bullish” (i.e., the price changes of the 

financial instrument of interest are generally positive).  If the testing of the model is 

based upon data from “bearish” periods (i.e., falling prices), then one should not be 

surprised if the testing yields disappointing results.  In Figure 2.1.1 the trend is 

essentially bullish up to record 20.  From about record 25 the trend becomes bearish.  

Clearly it is preferable to use data which is representative of the different types of 

market conditions that one is likely to encounter. 

 

2.1.1  Price data with bullish and bearish 
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The same argument holds true for the independent variables.  For example consider an 

indicator x which is some sort of oscillator about zero.  If the values of x are mostly 

positive during the modeling time periods, and then mostly negative during the testing 

time periods, once again one might expect poor results.  Clearly it is useful to devise 

statistical tests to measure the similarity of the modeling and testing data.  

 

3) Is serial correlation a problem?  Serial correlation is a problem unique to time 

series.  Serial correlation relates to the independence of adjoining points.  Are the 

adjoining points independent or are they somehow related?  We can define r (the 

correlation coefficient) between two variables (lets say x and y) as follows: 
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The notation SS is used for “sum of the squares”.  Consider the case where x is a 

candidate predictor and y is the same predictor lagged by one time period.  Serial 

correlation implies that the value of r is significantly larger than 0.  To illustrate this 

point assume that x and y are defined as follows: 

 

 X = MA(SERIES,10)     

 (2.1.5) 

 

 Y = LAG(MA(SERIES,10), 1)    

 (2.1.6) 

 

In the Figure 2.1.2, 21 values of SERIES and X (10 day Moving Average) computed 

from SERIES are shown.  The serial correlation of SERIES is –0.175 which is fairly 

close to zero, while the serial correlation of X is 0.623. 

 

Figure 2.1.2 - A time series and its moving average
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The high degree of correlation between adjoining values of X should not be 

surprising.  The values of Y (i.e., X lagged by one time period) are determined from 

almost the same 10 points as the values of X.  What does this imply?  Since the values 

of X are serially correlated, we really don’t have as much independent data as we 

might expect from just considering the number of data points.  Serial correlation is not 

necessarily a major problem.  It is merely a fact-of-life when modeling time series 

data and it should be considered when developing a modeling strategy. 

 

The Durbin-Watson test can be used to determine if the serial correlation of a time 

series is significant [Du71].  Descriptions of this test and Durbin Watson tables are 

included in many texts [e.g., Mc94].  A d statistic is computed which ranges from 0 to 

4: 
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.If the series does not exhibit serial correlation then d is approximately 2.  If the 

values are highly positively correlated, then d is close to 0 and if they are highly 

negatively correlated than d is close to 4. 

 

4) Does the model hold up over time?  The persistency of models is an important 

concept when using the models to make future predictions.  In financial markets one 

can discover many examples of models that work quite well up to a certain point in 



time and then cease to perform acceptably.  The user is then faced with trying to 

decide if the failure is temporary or is due to some underlying fundamental change in 

the market behavior. . There is no simple answer to this question.  However, it can be 

said that this problem is much more relevant for models developed using data from a 

longer time period.  For example, models based upon daily data are much more likely 

to become obsolete than models based upon 5 minute bar data.  The most obvious 

check for any model’s persistency is to save the most recent data for final testing.  If 

the model holds up at this point, then at least one can start using it with some degree 

of certainly that it is still a useful tool. 

 
 

2.2 Classical Methods of Time Series Modeling 

 The history of time series analysis predates the computer age.  H. Wold wrote a book in 1938 

which summarized the knowledge of the subject to that point in time: H.Wold, A Study in the 

Analysis of Stationary Time Series, Almqvist and Wiksell, Stockholm, 1938.  Another early book on 

the subject was written by the well-known cyberneticist Norbert Weiner (N. Weiner, The 

Extrapolation, Interpolation and Smoothing of Stationary Time Series with Engineering Applications, 

Wiley, 1949).  Wold and Weiner refer to the contributions of G. U. Yule, A, Khinchine and A. 

Kolmogoroff to time series analysis.  In the introduction to a fairly recent book edited by A. S. 

Weigend and N. A. Gershenfeld (A. S. Weigend and N. A. Gershenfeld,: Time Series Prediction: 

Forecasting the Future and Understanding the Past, Addison Wesley, 1994), the authors reflect upon 

the early work of Yule: “The beginning of ‘modern’ time series prediction might be set in 1927 when 

Yule invented the autoregressive technique in order to predict the annual number of sunspots.  His 

model predicted the next value as a weighted sum of previous observations of the series…For the half 

century following Yule, the reigning paradigm remained that of linear models driven by noise.”  

 

 A summary of classical time series analysis is included in the introduction of a well-known book 

by M. B. Priestley: Non-Linear and Non-Stationary Time Series Analysis, Harcourt Brace, 1988.  

“During the past fifty years or so, time series analysis has become a highly developed subject, and there 

are now well-established methods for fitting a wide range of models to time series data – as described 

in the books by Anderson [1971], Box and Jenkins [1970], Brillinger [1975], Chatfield [1975], Hannon 

[1970], Jenkins and Watts [1968], Koopmans [1975] and Priestley [1981].  However, virtually all the 

established methods rest on two fundamental assumptions; namely that (i) the series is stationary (or 

can be reduced to stationarity by some transformation, such as differencing), and (ii) the series 

conforms to a linear model.  Assumption (i) means, in effect, that the main statistical properties of the 

series remain constant over time, and (ii) means that the values of the observed series can be 

represented as linear combinations of present and past values of a ‘strictly random’ (or ‘independent’) 

series.  Needless to say, both of these assumptions are mathematical idealizations which, in some cases, 

may be valid only as approximations to the real situation.  In practical applications the most one could 

hope for is that, for example, over the observed time interval the series would not depart ‘too far’ from 

stationarity for the results to be invalid.” 

 

 One of the most well-known texts on the subject of time series analysis is the book by Box and 

Jenkins (Time Series Analysis: forecasting and control, Holden Day, Revised edition, 1976).  The 

original version of this book was written in 1969 and reflected the growing power of computers for 

solving time series problems.  The widespread availability of computers influenced many people to 

apply computers to the modeling of time series data.  It was obvious to most analysts that the ability to 

predict the future based upon past history could be incredibly valuable.  The techniques popularized by 

Box and Jenkins were applied to many areas of activity.  Analysts on Wall Street were among the early 

users of these techniques as they attempted to make predictions related to the financial markets. 

 

The classical approach was influenced by the computing power of the available machines.  Most of 

the emphasis at that time was to consider only the time series itself as the data source.  The two most 

popular model classes considered then were: 

 

1) 1)Linear Stationary Models called ARMA models (for Auto Regressive Moving Average). 

 



2) 2)Linear Non-stationary Models called ARIMA models (for Auto Regressive Integrated 

Moving Average). 

 

 The ARMA models are based upon an assumption that the time series is generated by a linear 

aggregation of random shocks.  Since the random shocks may be positive or negative, we would expect 

the time series to vary about some mean value.  The word stationary refers to the mean value of the 

time series.  The basic equation for this class of models is: 

 ...2*21*1
 aψaψaz tttt

   (2.2.1) 

 

In this equation zt is a deviation at time t from the mean value of the variable of interest. The process at 

may be regarded as a random shock of white noise (i.e., its expected value is zero and its standard 

deviation is a constant over time).  Theoretically the summation may go back to the first value of the 

time series.  However, practically it is limited to several steps backwards in time.  Box and Jenkins 

discuss at length how one goes about choosing the optimal number of time steps to be included in the 

model.  The ’s in the model are unknown constants which can be determined as part of the modeling 

process.  It can be shown that under suitable conditions equation (2.2.1) reduces to the following: 

 

  ...2*21*1  zzaz ππ
tttt

    (2.2.2) 

 

This equation relates. zt  (the deviation at time t) to the deviations at previous times with the addition of 

a random shock at time t.  The ’s are unknown constants.  Using the data available for modeling, the 

’s are determined and then the ARMA model can be used to predict the change from time t to t+1 

using the changes from t-1 to t, t-2 to t-1, etc.  If the model is a true representation of the values of zt 

then the uncertainty introduced by using (2.2.2) to compute zt is simply at (the unknown random 

shock).  This is the beauty of ARMA modeling but alas, the financial markets are not that simple! 

 

 The ARIMA models differ from ARMA models in that there is no assumption that the deviations 

are from a fixed mean value.  In other words, the values of z may drift up or down as they are not tied 

to a fixed mean.  Daily changes in stock prices are an example of a non-stationary time series.  For 

ARIMA models, the basic assumption is that some difference of the process is stationary.  In other 

words, if we look at the first order difference (or second, or third, etc.) of z, we can use an ARMA 

process.  Using only the time series itself, one can gain some insight into the nature of the model.  

When trying to develop a model to predict the change in the current value of a financial instrument, 

ARMA and ARIMA models are useful in determining the importance of past changes and moving 

averages of the series.  Often candidate predictors based upon differences and moving averages of the 

time series itself turn out to be among the most relevant predictors.  However, with the massive power 

of today’s computers (as compared to the machines of the 1960’s and 1970’s), there is no need to limit 

the search to models based solely upon the time series itself. 

 

 There is also no need to limit the search to linear models.  The ARMA and ARIMA models and 

the many variations spawned from these techniques are parametric in nature: they are based upon linear 

equations with unknown parameters.  Weigend and Gershenfeld trace the first example of the 

recognition of the limits of linear modeling to one of the early pioneers in time series analysis: S. 

Ulam.  In 1957 Ulam discussed the problems associated with predicting the next values of the time 

series generated with the following simple equation: 

 

    xxx ttt  11       (2.2.3) 

 

Linear modeling fails for this problem.  In 1980 Tong and Lim described a technique called the 

threshold autoregressive model (TAR) which is considered the first globally nonlinear method for 

modeling time series.  A description of the method is included in Tong’s book: H. Tong, Threshold 

Models in Nonlinear Time Series Analysis, Springer Verlag, 1983.  Since then a lot of interesting work 

on nonlinear time series analysis has been reported.  Contributions from many of the leaders in the field 

are included in a book edited by T. Subba Rao: Developments in Time Series Analysis (in honor of M. 

B. Priestley), Chapman and Hall, 1993. 

 



 The general subject of data mining has received considerable attention in recent years.  The 

combination of huge databases and very powerful computers has led to a thriving modeling industry.  

Many academics and industrialists have realized that benefits can be obtained if tools are available for 

extracting information from their databases.  As a result, commercial software based upon well-known 

techniques is readily available.  There are three basic categories into which most popular techniques 

fall (S. M. Weiss, N. Indurkhya, Predictive Data Mining: A Practical Guide, Morgan Kaufman, 1998): 

 

 1) Techniques based upon derivation of mathematical equations (e.g., classical regression and 

neural networks). 

 

 2) Techniques based upon development of logical rules. 

 

 3) Techniques based upon similarity (or distance). 

 

Within each category there are variations and hybrid technologies are becoming popular.  All of these 

techniques can be used to develop non-linear models in which a variety of candidate predictors are 

considered. .  Access to many publicly and commercially available data mining software products can 

be found at the Internet site www.kdnuggets.com. 

 

 Currently within the financial community modeling based upon neural networks is receiving 

considerable interest.  A number of books have recently been written on the subject (A. P. Refenes, 

Neural Networks in the Capital Markets, Wiley, 1995, E. Gately, Neural Networks for Financial 

Forecasting, Wiley, 1996, J. S. Zirilli, Financial Prediction using Neural Networks, International 

Thompson Publishing, 1996).  However, experience with neural networks is making users aware of the 

major problem with this technique: computational speed decreases dramatically as the number of input 

variables increases.  In addition, the need for data records is also strongly dependent upon the number 

of input variables.  (S. Haykin, Neural Networks – A Comprehensive Foundation, Prentice Hall, 1994).  

One method of enhancing the neural network approach is to preprocess the data in an attempt to 

eliminate some of the input variables. 

 

 Techniques directed towards development of a set of rules are popular in many data mining 

applications.  The appeal of these methods is that the output is a model that is easily understandable.  

For example, in credit scoring applications, it is comforting to be able to explain why a person is given 

or refused credit.  Contrast these sorts of models to the output of a neural network in which a prediction 

is just a number derived from a non-linear transformation based upon many computed weights.  

Probably the most well know rule generating technique is CART (L. Breiman, J. Friedman, R. Olshen, 

C. Stone, Classification and Regression Trees, Pacific Grove: Wadsworth, 1984, also see www.salford-

systems.com).  In the financial community use of genetic algorithms to generate rules is gaining in 

popularity (R. J. Bauer, Genetic Algorithms and Investment Strategies, Wiley, 1994). 

 

 Similarity or distance based techniques use the data as the model.  No attempt is made to replace 

the data with a set of equations.  When making a prediction, the basic concept is to find previous 

examples of similar (i.e., nearby) cases.  If the database is large (as is usually the case in financial 

market modeling), the need for online memory is large.  However, the available RAM in today’s 

machine is much greater than the machines of a few years ago and will be much less than the available 

RAM a few years down the line.  The problem, of course, is locating the nearby cases in a multi-

dimensional space.  If these cases can be located efficiently, then the computational speed can be 

orders of magnitude faster than neural networks.  Kernel regression (KR) is a technique fitting into this 

category and rapid implementations are possible (see Chapter 4).  Thus KR can be used either as a 

preprocessor to neural networks or as an alternative stand-alone modeling technique. 

 

 

2.3 The Curse of Dimensionality 

 

A well known concept in financial market modeling is the curse of dimensionality.  This concept 

actually relates to all very complex systems: the amount of data required increases exponentially with 

the number of variables appearing in the model (R.E. Bellman, Adaptive Control Processes, Princeton 

University Press, 1961).  It is also well known that the greater the system complexity, the greater the 

number of dimensions required to adequately describe the system behavior.  (This concept is 



sometimes referred to as the law of requisite variety.)  Financial markets are indeed very complex 

systems so we require the ability to develop models with a fairly large number of dimensions (for 

example, four or more) and therefore there is the need for a large number of data points.  Probably 

there is a real model that if known could predict financial market movement with absolute certainly!  

This model is often called God’s model and he alone knows the true structure of the model.  We live in 

a very complex world and there are many phenomena which drive financial markets and often in a 

highly non-linear fashion.  Very few people seriously believe it is possible to determine God’s model. 

 

 The result of the curse of dimensionality is that we go into the modeling of financial markets 

knowing that there is no hope of completely understanding the causes of market behavior.  The markets 

are just too complex to be able to develop models that give consistently accurate predictions.  What can 

be done however is to take a statistical perspective of the task.  Can we make predictions that have 

some utility?  The predictions have utility if we can use them in such a manner that we gain some edge 

on random guessing.  If the models explain some of the movement in the data then they might have 

utility. 

 

 To have some hope of developing useful models of very complex systems (like financial 

markets), we need to propose models with a large number of variables (i.e., dimensions).  One hopes 

that if there are enough proposed candidate predictors, some of them might turn out to be useful.  

Unfortunately, there is no guarantee that a useful model can be determined even if the number of 

candidate predictors is large (for example, several hundred).  Typically one chooses candidate 

predictors based upon solid economic theory.  For example, we might expect that changes in interest 

rates from yesterday to today might have some influence upon the change in the price of gold from 

today to tomorrow.  The choice of useful candidate predictors is a subject that continues to receive 

considerable attention in the literature and is discussed at greater length in Section 2.4.   

 

 From the preceding paragraph one should not get the impression that all the candidate 

predictors will appear in the final model.  A typical strategy is to attempt to find a subset of the 

candidate predictors upon which the final model is based.  The concept of data sparseness was 

introduced in Section 1.3.  As the dimensionality of the model increases by one dimension, the density 

of the data is halved.  As the number of dimensions increases to a value required to develop useful 

models, often the amount of data becomes too small to support the model!  In Section 1.3 it was 

emphasized that the maximum dimensionality of the model is governed by the data available for 

modeling.  If the amount of data is too small, then strategies to partially compensate for this lack of 

data are required.  There are several methods for combating this curse of dimensionality: 

 

1) Combine variables in such a manner that one new variable includes effects from several of the 

original variables. 

2) Use a multistage modeling strategy (i.e., the outputs of one stage are the inputs to the next 

stage). 

3) Increase the amount of data by combining similar data sets. 

 

There are well known techniques for combining variables (e.g., Principle Components).  Multistage 

modeling is an alternative strategy for accomplishing the same effect.  This subject is discussed in a 

later chapter.  Increasing the amount of data can often be accomplished in a straightforward manner.  

For example, if one is trying to model securities, it might be possible to use groups of similar stocks 

(i.e., from a particular sector of the stock market).  By combining the data from a number of stocks, one 

can develop a larger database available for modeling.  Similarly, modeling of the commodities markets 

can be based upon grouping similar commodities (e.g., currencies). 

 

 

2.4 Candidate Predictors 

 

 One of the first tasks required to model financial markets is to propose a set of candidate 

predictors.  If we really knew what drives the market of interest, then there would be no need for 

candidate predictors.  In reality, no one really knows with certainty what drives financial markets.  We 

might have some idea which time series have relevance regarding the market of interest, but that is 

usually the limit of our knowledge.  Knowing that series A, series B and series C might have some 

relevance regarding market X is a long way from knowing the connection between A and X, B and X 



and C and X.  What can be done is to develop a set of candidate predictors based upon each of these 

series and add these predictors to the overall set of predictors that will form the basis of the modeling 

process. 

 

 

2.4.1 Differences 

 

 The most obvious candidate predictors are simple differences.  Assume we are trying to model 

price changes one time unit into the future.  Some obvious choices for candidate predictors are the last 

changes over N times units (where several values of N might be selected).  For example: N = 1, 2, 3 

and 5.  As an example consider the following table: 

 

     DATE     PRICE             Y           X1            X2           X2           X3            X4

970610 865.8 2.95 3.3 19.7 23.7 19.8

970611 868.75 1.6 2.95 6.25 22.65 25.95

970612 870.35 24.35 1.6 4.55 7.85 28.25

970613 894.7 8.65 24.35 25.95 28.9 48.6

970616 903.35 0.65 8.65 33 34.6 40.85

970617 904 -1.35 0.65 9.3 33.65 38.2

970618 902.65 -3.6 -1.35 -0.7 7.95 33.9

970619 899.05 8.55 -3.6 -4.95 -4.3 28.7

970620 907.6 -3.5 8.55 4.95 3.6 12.9  
 

Table 2.4.1 - S & P prices and Price Differences 

 

 

In Table 4.2.1 The Y column is future looking: tomorrows closing S & P price index minus today’s 

price index.  The X columns are all backwards looking.  The X1 column is the one day price 

difference, X2 is the two day price difference, X3 is the 3 day price difference and X4 is the 5 day price 

difference.  Each of the four X columns can be considered as candidate predictors for Y.  At the end of 

each day the X values can be computed.  If we could determine a model based upon these four X’s, 

then we could predict Y. 

 

 To quickly test whether or not these X’s by themselves are powerful predictors of Y, we can 

compute correlations as described in Section 2.1.  Using 1250 days of data (920722 to 970630) the 

results are not very encouraging.  The correlation coefficients for Y versus X1, X2, X3 and X4 are –

0.0548, -0.0554, -0.0726, and –0.0658 respectively.  These differences are slightly negatively 

correlated with Y but the values are close to zero.  (Using a statistical t-test we can show that these 

values are not significantly different from zero.  W. Mendenhall & T. Sincich, Statistics for 

Engineering and Science – 3
rd

 Edition, Maxwell MacMillan, 1992
1
)  It can be concluded from these 

numbers that a simple ARMA or ARIMA model will not be sufficient to predict the changes in the 

S&P price index.  However, these X’s might combine well with other candidate predictors to create a 

model that does have a greater degree of predictive power. 

 

 Differences from one series can also be used as candidate predictors for another series.  For 

example, changes in the short term and long term interest rates might be used as candidate predictors 

for an S&P model.  Alternatively, one might prefer differences of the ratios of the series.  There are 

many variations to this theme and the number of differences that can be proposed is only limited by the 

analyst’s imagination. 

 

 

2.4.2 Moving Averages 

 

                                                           
1 To test the significance of r, the  t statistic is computed: t = r*sqrt(n – 2) / sqrt(1 – r2) where n is the number of data points 

used to compute r.  If the true value of r is zero (i.e., there is no correlation), then t should be distributed according to the 

Student’s t distribution with n-2 degrees of freedom.  This distribution rapidly approaches a standard normal distribution: with n-

2>10 the values are less than 15% greater than the standard normal.  The largest value of r above (i.e., -0.0726) yields a value of 

t = -2.56.  The probability of a value of r being at least this negative (if the true value is zero) is approximately 0.5%. 



 Moving averages by themselves are not useful candidate predictors.  If, for example, a time 

series is trending upwards and then suddenly shifts direction, moving averages of the series will also 

change direction but at a later time.  As the time period of the moving average increases, the time lag in 

this change of direction also increases.  This lag in response time makes them quite useless as 

predictors.  However, when used in conjunction with other series they can be quite powerful. 

 

 A typical predictor based upon moving averages is the ratio of a series to its moving average.  

Many trading systems are based on rules concerning such ratios.  For example, if the ratio of the 

closing price of a series to its moving average minus one changes sign, then buy if the change is 

positive or sell if it is negative.  The problem can be stated in mathematical terms: time series such as 

market prices and interest rates are non-stationary.  Moving averages of these time series are also non-

stationary, but the ratio of the series to its moving average is a stationary series about a mean value of 

one.  Candidate predictors are only useful if they are based upon stationary time series.  The need for 

stationarity of the candidate predictors is due to a basic modeling assumption: past history is relevant to 

future behavior.  If a candidate predictor is non-stationary then there is a distinct possibility that current 

values of the candidate predictor are not within the range of past values.  If this is the case, then we 

cant make a prediction based upon similar past values as none exist! 

 

 There are other series that are similar to moving averages but serve slightly different purposes.  

Two of these are moving medians and exponential smoothings.  Series based upon moving medians 

take longer to compute than moving averages but they are less sensitive to outliers in the data.  The 

additional computing time is due to the need to sort the data to compute a median value.  Exponential 

smoothings of data serve a similar purpose as moving averages and moving medians but require less 

computing time.  Instead of N (the number of time periods) used to compute a moving average or a 

moving median, exponential smoothing uses a smoothing parameter  which is assigned a value 

between 0 and 1.  We define the exponential smoothing of SERIES as follows: 

 

 ES_SERIES(t)SERIES(t) *  + ES_SERIES(t-1) * (1 - ) 

 (2.4.1) 

 

The exponentially smoothed value of the series at time t is computed using only the value of the series 

at time t and the exponentially smoothed value at time t-1.  It can be seen that the contribution of 

SERIES(t) is the same for both moving average and exponential smoothing if  =  1/N.  However, all 

values of SERIES up to time t affect the exponentially smoothed value.  For moving averages and 

moving medians only the last N values are used to compute these series. 

 

 

2.4.2 Moving Slopes 

 

 Moving slopes of time series are similar to moving averages.  They can be used to identify a 

trend but they change direction rather slowly.  For example, if a time series is in an upward trend, the 

value of a moving slope of the series is positive.  If the series suddenly changes direction, the moving 

slope will eventually turn negative but at a later time.  The lag in response time increases as the time 

period used to determine the slope increases.  Like moving averages, moving slopes are also non-

stationary time series.  The value of a moving slope is that it is a measure of the “trendiness” of a time 

series.  It can therefore be used to create stationary candidate predictors that capture this quality. 

 

 Once again the use of moving slopes to create candidate predictors is only limited by the 

imagination of the analyst.  A very simple use of a moving slope is to remove the trend from the 

difference series.  Differences are not exactly stationary series but they are close to being stationary.  

The series created by subtracting a moving slope from a difference is stationary.  Whether it is a useful 

candidate predictor is another matter. 

 

 As an example of a more interesting candidate predictor based upon a moving slope, consider 

two time series: SERIES1 is the N day moving slope of a price series and SERIES2 is the change in 

volume of the market in question.  The product of these two series might be interesting.  This product is 

not exactly stationary but since it is based upon one day changes in volume it is fairly close to being 

stationary.  If the volume change is positive and the one day difference in the price is in the opposite 

direction to SERIES1, then the market might be changing direction.  This candidate predictor is an 



example of a series that is probably quite meaningless on its own.  However, when examined 

conjointly with other series, it might be useful. 

 

 

2.5 The Equity Curve 

 

 When modeling financial markets, at some point there is a need to generate equity curves.  

The purpose of modeling financial markets is to develop trading strategies and the evaluation of any 

trading strategy requires analyses of the equity curves.  A number of parameters can be computed from 

an equity curve and these parameters are then used to evaluate the quality of the equity curve.  Some of 

the most popular measures of the quality of an equity curve are: 

 

1) The rate of return 

2) The Sharpe ratio 

3) The maximum drawdown 

4) The average drawdown 

 

The rate of return: Clearly, the purpose of a trading system is to generate a return on one’s capital.  

Thus the rate of return (ROI) is probably the most important single measure of performance.  Usually it 

is stated on an annualized basis.  To compute ROI, one looks at the initial and final equity.  However, 

there is another issue that must be considered: is the equity curve based upon compounding?  In other 

words, if the positions are allowed to grow as the equity grows, then we assume compounding.  

Alternatively, if a standard position size is used then there is no compounding.  Without compounding 

the computation of ROI is: 

 

ROI=100*(((equity[final]/equity[initial])*RECS_PER_YEAR/RECS)–1) (2.5.1) 

 

With compounding the computation is: 

 

ROI=100*((pow(equity[final]/equity[initial],RECS_PER_YEAR/RECS)–1) (2.5.2) 

 

In these equations, RECS are the number of records in the equity curve.  The pow function is a 

standard C function which returns the first argument raised to the power of the 2
nd

 argument.  As an 

example, assume that the equity curve is based upon 500 daily records and RECS_PER_YEAR is 250 

(i.e., 2 years of data).  Assume that the ratio of equity[final]/equity[initial] is 1.5.  Without 

compounding, ROI is 25%.  With compounding, ROI is 22.5%. 

 

 As a more realistic example, consider a portfolio of stocks.  If one were to 

maintain a buy-and-hold strategy, average performance comparable to the S&P index could 

be expected.  Looking at the closing prices for the S&P index from 600104 to 980113 the 

index rose from 59.91 to 952.12 (i.e., a factor of 15.9 in 38.03 years.  On a compounded 

basis, the ROI for this period is 7.54%. 

 

The Sharpe Ratio: The Sharpe Ratio as a measure of performance was suggested by 

William F. Sharpe.  His book (W. F. Sharpe, Investments, Prentice-Hall, 1979) summarizes 

his many contributions to the analysis of investment strategies.  There are several different 

definitions of the Sharpe Ratio in use today, but usually it is defined as the ratio of ROI 

(expressed as a fraction and not a percent) to  (the standard deviation of the equity 

changes).  Clearly, for this measure of performance to be a dimensionless number, the units 

for ROI and must be the same.  To annualize , the value of  generated from the daily 



fractional equity changes must be multiplied by sqrt(RECS_PER_YEAR).  The resulting 

equation is: 

 

Sharpe_ratio = (ROI/100) / (* sqrt(RECS_PER_YEAR))  (2.5.3) 

 

 Using the S&P data (from 600104 t0 980113), a value of 0.553 is obtained.  This 

is not a very impressive number!  A value less than one implies that on the average equity 

swings are larger than the ROI.  After all, the alternative is to invest money in a “risk-free” 

vehicle (like a CD or a short term Treasury Bill).  When modeling financial markets, the 

objective is to develop a portfolio that significantly out-performs the risk-free interest rate 

(which changes over time) but do it in such a way as to minimize risk.  The Sharpe Ratio 

takes both of these factors into consideration. 

 

The Maximum Drawdown: The maximum drawdown is a measure of “pain” as well as 

performance.  The drawdown at any given moment is the fractional decrease in equity from 

the previous equity high point.  As an investor watches an investment lose value, he or she 

begins to feel pain.  The maximum drawdown is a very important measure of this 

phenomenon.  Using a vector language like TIMES (Zmanim Inc., Walnut Creek, Calif), 

the drawdown can be computed as follows: 

 

 MaxEquity = scan max(Equity); 

 EquityRatio = Equity / MaxEquity; 

 Drawdown = 1 – EquityRatio; 

 

The scan operator creates a series based upon the max operator.  The first term is 

Equity[1], the second term is Equity[1] max Equity[2], the third term is Equity[1] max 

Equity[2] max Equity[3], etc.  The input series is Equity and the resulting series 

Drawdown is a series with the same length as Equity and with values from zero to the 

Maximum Drawdown.  For the S&P series, the maximum observed drawdown was 0.482 

which occurred on Oct 3, 1974.  The S&P index fell from a high of over 120 on Jan 11, 

1973 to 62.28 (i.e., a decrease of almost 50%).  This time period was almost two years in 

duration and included the mid-East oil crisis. 

 

The Average Drawdown:  This measure of performance is similar to the Maximum 

Drawdown.  It is the average value of drawdown over the entire period.  For the S&P data, 

the Average Drawdown in this period was 0.087.  This means that the S&P index over the 

38 year period analyzed was on the average down 8.7% from its previous high.

 

 A really interesting question is: can drawdown be predicted?  Clearly, if anyone 

could predict when a serious drawdown was about to occur, he or she would be able to 

amass a considerable fortune.  This is a very difficult prediction problem.  However, a 

relatively simple problem is predicting the probability of a drawdown of size P% or 

greater at some time in the future.  A simple model of financial markets is that the daily 

fractional changes in equity are normally distributed around a non-zero mean value.  If the 

mean value is positive, then one would expect the equity curve to gradually rise but exhibit 

periodic upward and downward swings.  If we denote the mean value as  and the standard 

deviation as , then we can say that the equity changes are distributed as follows: 



 (Equity[I+1] – Equity[I]) / Equity[I] =    (2.5.4) 



 Distributions based upon this model are often called Inverse Gaussian or Wald 

distributions (N. L. Johnson and S. Kotz, Continuous Univariate Distributions, Houghton 

Mifflin, 1970).  The “motion” derived from this distribution is called Brownian Motion.  It 

can be shown (Private Communication, P. Feigin) that the probability of a drawdown of 

P% or greater can be related to  and  as follows: 

 

  100/1P)ownProb(Drawd
2

/2
P 

  (2.5.5) 

 

Using the S&Pdata, the values of  and  for the 38.03 years of data are 0.0003263 and 

0.008601.  The exponent in Equation 4.3.5 is thus 8.8226.  In Table 4.3.1 the probabilities 

of drawdowns for various values of P are compared to the actual values obtained from the 

data. 

 

P-VALUES 10% 20% 30% 40% 50% 

Actual 0.511 0.347 0.236 0.13 0.026 

Eq 2.5.5 0.636 0.395 0.238 0.14 0.043 

 

Table 2.5.1 – Actual and predicted fraction of days with drawdown >= P (S&P price 

index). 

 

 

For this simple Brownian motion model of the S&P price index, the results are surprisingly 

accurate.  For example, Equation 2.5.5 predicts the probability of a 40% drawdown as 

slightly greater than 1%.  The actual observed number of days with drawdowns of this or 

greater magnitude was slightly less than 1%.  Even for a P of 5% the results are still within 

statistical accuracy.  To prove this, a random number generator was used to create a series 

of the same length (i.e., 9572 records) using the same values of  and .  This experiment 

was repeated 10 times.  The average fraction of days with drawdowns greater or equal to 

5% was 0.654 with a standard deviation of 0.093.  The value of 0.511 is thus well within 

the 2 sigma range. 

 

 From Equation 2.5.5 we see that the exponent 2/2  is a powerful parameter 

which can be used to predict the probabilities of drawdowns of varying magnitude.  In 

Table 2.5.2 the exponent required to achieve various probability levels are listed for a 

variety of P values. 

 

P-VALUES 10% 20% 30% 40% 50% 

0.0001 87.4 41.3 25.8 18.0 13.30 
0.001 65.6 30.9 19.4 13.5 9.96 

0.01 43.7 20.6 12.9 9.0 6.64 

 

Table 2.5.2 – Values of 2/2  required to achieve varying drawdown probabilities 

 

 

As an example of how Table 2.5.2 is used, consider a requirement that a trading system 

achieve a probability of less than 0.001 for a 30% drawdown.  From the table we see that 

an exponent of at least 19.4 is required.  If, for example, we could achieve a 20% annual 

ROI, then the daily  would be 0.00073 (assuming 250 trading days per year, 0.00073=1.2
-

250
 - 1).  The target value of  would thus be sqrt(2/19.4) which is 0.00867. 

 

 



2.6 Measuring the Efficiency of a Modeling Method 

 

 Regardless of the method used for modeling, it is often useful to be able to measure how well 

the method succeeds.  Measurements of efficiency are useful when comparing different methods or 

when doing parameter studies within the domain of a particular method.  For example, if one is using a 

neural network approach to modeling, one might want to study the effect of the number of neurons 

upon performance of the network.  A very powerful measurement technique is based upon the use of 

artificial data that has been constructed in such a manner as to have the sort of properties that one 

anticipates in real data sets.  If, for example, a modeling method fails using artificial data, it is 

important to understand the reason for failure before attempting to model real data.  Using real data it is 

only possible to detect failure if one can be assured that some underlying model drives the data.  For 

financial application this is often not the case.  The starting point in the generation of artificial data sets 

is to first list the properties that one would expect in such data and then build the artificial data sets 

accordingly. 

 

 To build an artificial data set, one first has to propose a model.  Typically Y (the dependent 

variable) is created as a function of several X variables (the independent variables) plus random noise.  

If, for example, the modeling method will include a search through a large candidate predictor space, 

the data set would include many X variables, most of which are unrelated to Y.  The noise component 

may be generated in a variety of different ways.  For example, it might be pure Gaussian random noise 

(mean of zero and  of some specified amount), it might be a random value between XMIN and 

XMAX or it might be generated by some sort of chaotic process [Ma99].  For financial market 

modeling, one problem often encountered is a change in market volatility over time.  To simulate 

volatility changes one might use a Gaussian random noise generator but vary  over time. 

 

 The most straightforward measure of efficiency of the modeling process is the fraction or 

percentage of the variance of the true signal (i.e., the pure function without noise) that is captured by 

the process.  For example, lets say a data set of 15000 records has been created in which the Y column 

is 10% signal and 90% random noise.  Lets assume that 10000 records are used to create the model and 

the remaining 5000 are used to test the model.  By comparing the actual values of Y with the values of 

Ycalc (the calculated values of Y for the test set), the VR (Variance Reduction) can be computed using 

Equation 1.4.1.  If, for example, a value of VR = 7.25 is computed, then we can say that the modeling 

process was 72.5% efficient for the particular example under consideration.  In other words, the 

modeling process captured 72.5% of the actual variance in the pure signal.  Note that a perfect model 

would yield a VR = 10 because the Y column is 10% signal and 90% noise.  Due to the random 

component in the generated data, it is possible to obtain a value of VR slightly in excess of 10, but if 

VR significantly exceeds 10 for this example, one would immediately suspect that the process is 

somehow overfitting the data. 

 

 In Section 5.1 a TIMES program for generating artificial data [Ti99] is included in Figure 

5.1.1.  This program illustrates the generation of a data set with 10 columns of X variables and five Y 

columns.  The X columns are created using a Gaussian random number generator.  The first Y column 

(i.e., column 11) is the pure signal column, and the next four columns are created by adding varying 

degrees of noise to column 11.  Column 12 has a 50% noise component, column 13 has 75% noise, 

column 14 has 90% noise and column 15 has 95% noise. The pure signal is created using a nonlinear 

function of X2, X5 and X9.  The equations for generating measured levels of noise (i.e., Equations 

5.1.1 through 5.1.4) are also included in Section 5.1.  The results included in Chapter 5 are based upon 

artificial data generated in this manner.  In addition, the comparison of KR (kernel regression) and NN 

(neural networks) included in Appendix D are also based upon a similar data set. 


